Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Yehuda Lindell:

TR17-112 | 27th June 2017
Yehuda Lindell

How To Simulate It -- A Tutorial on the Simulation Proof Technique

One of the most fundamental notions of cryptography is that of \emph{simulation}. It stands behind the concepts of semantic security, zero knowledge, and security for multiparty computation. However, writing a simulator and proving security via the use of simulation is a non-trivial task, and one that many newcomers to the ... more >>>

TR11-036 | 17th March 2011
Gilad Asharov, Yehuda Lindell

A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty Computation

Revisions: 4

In the setting of secure multiparty computation, a set of $n$ parties with private inputs wish to jointly compute some functionality of their inputs. One of the most fundamental results of information-theoretically secure computation was presented by Ben-Or, Goldwasser and Wigderson (BGW) in 1988. They demonstrated that any $n$-party functionality ... more >>>

TR11-003 | 10th January 2011
Yehuda Lindell

Constant-Round Zero-Knowledge Proofs of Knowledge

Revisions: 1

In this note, we show the existence of \emph{constant-round} computational zero-knowledge \emph{proofs of knowledge} for all $\cal NP$. The existence of constant-round zero-knowledge proofs was proven by Goldreich and Kahan (Journal of Cryptology, 1996), and the existence of constant-round zero-knowledge \emph{arguments} of knowledge was proven by Feige and Shamir (CRYPTO ... more >>>

TR04-083 | 8th September 2004
Boaz Barak, Yehuda Lindell, Salil Vadhan

Lower Bounds for Non-Black-Box Zero Knowledge

We show new lower bounds and impossibility results for general (possibly <i>non-black-box</i>) zero-knowledge proofs and arguments. Our main results are that, under reasonable complexity assumptions:
<li> There does not exist a two-round zero-knowledge <i>proof</i> system with perfect completeness for an NP-complete language. The previous impossibility result for two-round zero ... more >>>

TR04-063 | 23rd July 2004
Yehuda Lindell, Benny Pinkas

A Proof of Yao's Protocol for Secure Two-Party Computation

Revisions: 1

In the mid 1980's, Yao presented a constant-round protocol for
securely computing any two-party functionality in the presence of
semi-honest adversaries (FOCS 1986). In this paper, we provide a
complete description of Yao's protocol, along with a rigorous
proof of security. Despite the importance of Yao's protocol to the
field ... more >>>

TR02-026 | 7th April 2002
Boaz Barak, Yehuda Lindell

Strict Polynomial-time in Simulation and Extraction

Revisions: 2

The notion of efficient computation is usually identified in cryptography and complexity with probabilistic polynomial time. However, until recently, in order to obtain \emph{constant-round} zero-knowledge proofs and proofs of knowledge, one had to allow simulators and knowledge-extractors to run in time which is only polynomial {\em on the average} (i.e., ... more >>>

ISSN 1433-8092 | Imprint