Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Andrej Bogdanov:

TR17-136 | 10th September 2017
Salman Beigi, Andrej Bogdanov, Omid Etesami, Siyao Guo

Complete Classi fication of Generalized Santha-Vazirani Sources

Let $\mathcal{F}$ be a finite alphabet and $\mathcal{D}$ be a finite set of distributions over $\mathcal{F}$. A Generalized Santha-Vazirani (GSV) source of type $(\mathcal{F}, \mathcal{D})$, introduced by Beigi, Etesami and Gohari (ICALP 2015, SICOMP 2017), is a random sequence $(F_1, \dots, F_n)$ in $\mathcal{F}^n$, where $F_i$ is a sample from ... more >>>

TR17-113 | 1st July 2017
Andrej Bogdanov, Alon Rosen

Pseudorandom Functions: Three Decades Later

In 1984, Goldreich, Goldwasser and Micali formalized the concept of pseudorandom functions and proposed a construction based on any length-doubling pseudorandom generator. Since then, pseudorandom functions have turned out to be an extremely influential abstraction, with applications ranging from message authentication to barriers in proving computational complexity lower bounds.

In ... more >>>

TR17-091 | 17th May 2017
Andrej Bogdanov

Small bias requires large formulas

A small-biased function is a randomized function whose distribution of truth-tables is small-biased. We demonstrate that known explicit lower bounds on the size of (1) general Boolean formulas, (2) Boolean formulas of fan-in two, (3) de Morgan formulas, as well as (4) correlation lower bounds against small de Morgan formulas ... more >>>

TR16-131 | 21st August 2016
Andrej Bogdanov, Siyao Guo, Ilan Komargodski

Threshold Secret Sharing Requires a Linear Size Alphabet

We prove that for every $n$ and $1 < t < n$ any $t$-out-of-$n$ threshold secret sharing scheme for one-bit secrets requires share size $\log(t + 1)$. Our bound is tight when $t = n - 1$ and $n$ is a prime power. In 1990 Kilian and Nisan proved ... more >>>

TR15-182 | 13th November 2015
Andrej Bogdanov, Yuval Ishai, Emanuele Viola, Christopher Williamson

Bounded Indistinguishability and the Complexity of Recovering Secrets

Revisions: 1

We say that a function $f\colon \Sigma^n \to \{0, 1\}$ is $\epsilon$-fooled by $k$-wise indistinguishability if $f$ cannot distinguish with advantage $\epsilon$ between any two distributions $\mu$ and $\nu$ over $\Sigma^n$ whose projections to any $k$ symbols are identical. We study the class of functions $f$ that are fooled by ... more >>>

TR14-108 | 10th August 2014
Andrej Bogdanov, Christina Brzuska

On Basing Size-Verifiable One-Way Functions on NP-Hardness

Revisions: 1

We prove that if the hardness of inverting a size-verifiable one-way function can
be based on NP-hardness via a general (adaptive) reduction, then coAM is contained in NP. This
claim was made by Akavia, Goldreich, Goldwasser, and Moshkovitz (STOC 2006), but
was later retracted (STOC 2010).

more >>>

TR14-033 | 10th March 2014
Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, Alon Rosen

Candidate Weak Pseudorandom Functions in $\mathrm{AC}0 \circ \mathrm{MOD}2$

Revisions: 1

Pseudorandom functions (PRFs) play a fundamental role in symmetric-key cryptography. However, they are inherently complex and cannot be implemented in the class $\mathrm{AC}^0( \mathrm{MOD}_2)$. Weak pseudorandom functions (weak PRFs) do not suffer from this complexity limitation, yet they suffice for many cryptographic applications. We study the minimal complexity requirements for ... more >>>

TR12-157 | 12th November 2012
Andrej Bogdanov, Chin Ho Lee

On the depth complexity of homomorphic encryption schemes

Revisions: 2

We show that secure homomorphic evaluation of any non-trivial functionality of sufficiently many inputs with respect to any CPA secure encryption scheme cannot be implemented by constant depth, polynomial size circuits, i.e. in the class AC0. In contrast, we observe that certain previously studied encryption schemes (with quasipolynomial security) can ... more >>>

TR12-156 | 12th November 2012
Andrej Bogdanov, Chin Ho Lee

Limits of provable security for homomorphic encryption

Revisions: 1

We show that public-key bit encryption schemes which support weak homomorphic evaluation of parity or majority cannot be proved message indistinguishable beyond AM intersect coAM via general (adaptive) reductions, and beyond statistical zero-knowledge via reductions of constant query complexity.

Previous works on the limitation of reductions for proving security of ... more >>>

TR12-097 | 26th July 2012
Andrej Bogdanov, Siyao Guo

Sparse extractor families for all the entropy

We consider the problem of extracting entropy by sparse transformations, namely functions with a small number of overall input-output dependencies. In contrast to previous works, we seek extractors for essentially all the entropy without any assumption on the underlying distribution beyond a min-entropy requirement. We give two simple constructions of ... more >>>

TR11-126 | 17th September 2011
Benny Applebaum, Andrej Bogdanov, Alon Rosen

A Dichotomy for Local Small-Bias Generators

We consider pseudorandom generators in which each output bit depends on a constant number of input bits. Such generators have appealingly simple structure: they can be described by a sparse input-output dependency graph and a small predicate that is applied at each output. Following the works of Cryan and Miltersen ... more >>>

TR11-117 | 3rd September 2011
Andrej Bogdanov, Periklis Papakonstantinou, Andrew Wan

Pseudorandomness for read-once formulas

We give an explicit construction of a pseudorandom generator for read-once formulas whose inputs can be read in arbitrary order. For formulas in $n$ inputs and arbitrary gates of fan-in at most $d = O(n/\log n)$, the pseudorandom generator uses $(1 - \Omega(1))n$ bits of randomness and produces an output ... more >>>

TR11-012 | 2nd February 2011
Andrej Bogdanov, Alon Rosen

Input locality and hardness amplification

We establish new hardness amplification results for one-way functions in which each input bit influences only a small number of output bits (a.k.a. input-local functions). Our transformations differ from previous ones in that they approximately preserve input locality and at the same time retain the input size of the original ... more >>>

TR09-070 | 1st September 2009
Andrej Bogdanov, Zeev Dvir, Elad Verbin, Amir Yehudayoff

Pseudorandomness for Width 2 Branching Programs

Bogdanov and Viola (FOCS 2007) constructed a pseudorandom
generator that fools degree $k$ polynomials over $\F_2$ for an arbitrary
constant $k$. We show that such generators can also be used to fool branching programs of width 2 and polynomial length that read $k$ bits of inputs at a
time. This ... more >>>

TR07-102 | 4th October 2007
Andrej Bogdanov, Muli Safra

Hardness amplification for errorless heuristics

An errorless heuristic is an algorithm that on all inputs returns either the correct answer or the special symbol "I don't know." A central question in average-case complexity is whether every distributional decision problem in NP has an errorless heuristic scheme: This is an algorithm that, for every &delta; > ... more >>>

TR07-081 | 10th August 2007
Andrej Bogdanov, Emanuele Viola

Pseudorandom bits for polynomials

We present a new approach to constructing pseudorandom generators that fool low-degree polynomials over finite fields, based on the Gowers norm. Using this approach, we obtain the following main constructions of explicitly computable generators $G : \F^s \to \F^n$ that fool polynomials over a prime field $\F$:
\item a ... more >>>

TR06-073 | 8th June 2006
Andrej Bogdanov, Luca Trevisan

Average-Case Complexity

Revisions: 1

We survey the theory of average-case complexity, with a
focus on problems in NP.

more >>>

TR05-015 | 27th January 2005
Andrej Bogdanov, Luca Trevisan

On Worst-Case to Average-Case Reductions for NP Problems

We show that if an NP-complete problem has a non-adaptive
self-corrector with respect to a samplable distribution then
coNP is contained in NP/poly and the polynomial
hierarchy collapses to the third level. Feigenbaum and
Fortnow (SICOMP 22:994-1005, 1993) show the same conclusion
under the stronger assumption that an
more >>>

TR02-064 | 14th November 2002
Andrej Bogdanov, Luca Trevisan

Lower Bounds for Testing Bipartiteness in Dense Graphs

We consider the problem of testing bipartiteness in the adjacency
matrix model. The best known algorithm, due to Alon and Krivelevich,
distinguishes between bipartite graphs and graphs that are
$\epsilon$-far from bipartite using $O((1/\epsilon^2)polylog(1/epsilon)$
queries. We show that this is optimal for non-adaptive algorithms,
up to the ... more >>>

ISSN 1433-8092 | Imprint