We show that any nonzero polynomial in the ideal generated by the $r \times r$ minors of an $n \times n$ matrix $X$ can be used to efficiently approximate the determinant. Specifically, for any nonzero polynomial $f$ in this ideal, we construct a small depth-three $f$-oracle circuit that approximates the ... more >>>
A central question in derandomization is whether randomized logspace (RL) equals deterministic logspace (L). To show that RL=L, it suffices to construct explicit pseudorandom generators (PRGs) that fool polynomial-size read-once (oblivious) branching programs (roBPs). Starting with the work of Nisan, pseudorandom generators with seed-length $O(\log^2 n)$ were constructed. Unfortunately, ... more >>>
Derandomization of blackbox identity testing reduces to extremely special circuit models. After a line of work, it is known that focusing on circuits with constant-depth and constantly many variables is enough (Agrawal,Ghosh,Saxena, STOC'18) to get to general hitting-sets and circuit lower bounds. This inspires us to study circuits with few ... more >>>
In this paper we study the complexity of constructing a hitting set for $\overline{VP}$, the class of polynomials that can be infinitesimally approximated by polynomials that are computed by polynomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that there is a PSPACE algorithm that given ... more >>>
Many seminal results in Interactive Proofs (IPs) use algebraic techniques based on low-degree polynomials, the study of which is pervasive in theoretical computer science. Unfortunately, known methods for endowing such proofs with zero knowledge guarantees do not retain this rich algebraic structure.
In this work, we develop algebraic techniques for ... more >>>
Research in the last decade has shown that to prove lower bounds or to derandomize polynomial identity testing (PIT) for general arithmetic circuits it suffices to solve these questions for restricted circuits. In this work, we study the smallest possibly restricted class of circuits, in particular depth-$4$ circuits, which would ... more >>>
We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich for boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike the boolean setting, there has been ... more >>>
We present the first constructions of *single*-prover proof systems that achieve *perfect* zero knowledge (PZK) for languages beyond NP, under no intractability assumptions:
1. The complexity class #P has PZK proofs in the model of Interactive PCPs (IPCPs) [KR08], where the verifier first receives from the prover a PCP and ... more >>>
We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS), the algebraic proof system recently proposed by Grochow and Pitassi, where the circuits comprising the proof come from various restricted algebraic circuit classes. This mimics an established research direction in the ...
more >>>
We say that a circuit $C$ over a field $F$ functionally computes an $n$-variate polynomial $P \in F[x_1, x_2, \ldots, x_n]$ if for every $x \in \{0,1\}^n$ we have that $C(x) = P(x)$. This is in contrast to {syntactically} computing $P$, when $C \equiv P$ as formal polynomials. In this ... more >>>
Read-$k$ oblivious algebraic branching programs are a natural generalization of the well-studied model of read-once oblivious algebraic branching program (ROABPs).
In this work, we give an exponential lower bound of $\exp(n/k^{O(k)})$ on the width of any read-$k$ oblivious ABP computing some explicit multilinear polynomial $f$ that is computed by a ...
more >>>
An emerging theory of "linear-algebraic pseudorandomness" aims to understand the linear-algebraic analogs of fundamental Boolean pseudorandom objects where the rank of subspaces plays the role of the size of subsets. In this work, we study and highlight the interrelationships between several such algebraic objects such as subspace designs, dimension ... more >>>
We give deterministic black-box polynomial identity testing algorithms for multilinear read-once oblivious algebraic branching programs (ROABPs), in n^(lg^2 n) time. Further, our algorithm is oblivious to the order of the variables. This is the first sub-exponential time algorithm for this model. Furthermore, our result has no known analogue in the ... more >>>
Mulmuley recently gave an explicit version of Noether's Normalization lemma for ring of invariants of matrices under simultaneous conjugation, under the conjecture that there are deterministic black-box algorithms for polynomial identity testing (PIT). He argued that this gives evidence that constructing such algorithms for PIT is beyond current techniques. In ... more >>>
We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing (PIT) algorithms for read-once oblivious algebraic branching programs (ABPs). This class has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and Shpilka), but prior to this work had no known such black-box algorithm. Here we ... more >>>
We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing algorithms for depth-3 set-multilinear circuits (over arbitrary fields). This class of circuits has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and Shpilka), but has no known such black-box algorithm. We recast this problem as ... more >>>
We present three contributions to the understanding of QMA with multiple provers:
1) We give a tight soundness analysis of the protocol of [Blier and Tapp, ICQNM '09], yielding a soundness gap $\Omega(N^{-2})$, which is the best-known soundness gap for two-prover QMA protocols with logarithmic proof size. Maybe ...
more >>>
The results of Strassen and Raz show that good enough tensor rank lower bounds have implications for algebraic circuit/formula lower bounds.
We explore tensor rank lower and upper bounds, focusing on explicit tensors. For odd d, we construct field-independent explicit 0/1 tensors T:[n]^d->F with rank at least 2n^(floor(d/2))+n-Theta(d log n). ... more >>>