Multivariate multipoint evaluation is the problem of evaluating a multivariate polynomial, given as a coefficient vector, simultaneously at multiple evaluation points. In this work, we show that there exists a deterministic algorithm for multivariate multipoint evaluation over any finite field $\mathbb{F}$ that outputs the evaluations of an $m$-variate polynomial of ... more >>>
We present several variants of the sunflower conjecture of Erd\H{o}s and Rado and discuss the relations among them.
We then show that two of these conjectures (if true) imply negative answers to questions of Coppersmith and Winograd and Cohn et al. regarding possible approaches for obtaining fast matrix multiplication algorithms. ... more >>>
The {\em hybrid argument}
allows one to relate
the {\em distinguishability} of a distribution (from
uniform) to the {\em
predictability} of individual bits given a prefix. The
argument incurs a loss of a factor $k$ equal to the
bit-length of the
distributions: $\epsilon$-distinguishability implies only
$\epsilon/k$-predictability. ...
more >>>
We study the complexity of {\em rationalizing} network formation. In
this problem we fix an underlying model describing how selfish
parties (the vertices) produce a graph by making individual
decisions to form or not form incident edges. The model is equipped
with a notion of stability (or equilibrium), and we ...
more >>>
We give improved inapproximability results for some minimization problems in the second level of the Polynomial-Time Hierarchy. Extending previous work by Umans [Uma99], we show that several variants of DNF minimization are $\Sigma_2^p$-hard to approximate to within factors of $n^{1/3-\epsilon}$ and $n^{1/2-\epsilon}$ (where the previous results achieved $n^{1/4 - \epsilon}$), ... more >>>
Many commonly-used auction mechanisms are ``maximal-in-range''. We show that any maximal-in-range mechanism for $n$ bidders and $m$ items cannot both approximate the social welfare with a ratio better than $\min(n, m^\eta)$ for any constant $\eta < 1/2$ and run in polynomial time, unless $NP \subseteq P/poly$. This significantly improves upon ... more >>>
Given a set of observed economic choices, can one infer
preferences and/or utility functions for the players that are
consistent with the data? Questions of this type are called {\em
rationalization} or {\em revealed preference} problems in the
economic literature, and are the subject of a rich body of work.
In 1998, Impagliazzo and Wigderson proved a hardness vs. randomness tradeoff for BPP in the {\em uniform setting}, which was subsequently extended to give optimal tradeoffs for the full range of possible hardness assumptions by Trevisan and Vadhan (in a slightly weaker setting). In 2003, Gutfreund, Shaltiel and Ta-Shma proved ... more >>>
We study multiplayer games in which the participants have access to
only limited randomness. This constrains both the algorithms used to
compute equilibria (they should use little or no randomness) as well
as the mixed strategies that the participants are capable of playing
(these should be sparse). We frame algorithmic ...
more >>>
We give new constructions of randomness extractors and lossless condensers that are optimal to within constant factors in both the seed length and the output length. For extractors, this matches the parameters of the current best known construction [LRVW03]; for lossless condensers, the previous best constructions achieved optimality to within ... more >>>
A number of recent results have constructed randomness extractors
and pseudorandom generators (PRGs) directly from certain
error-correcting codes. The underlying construction in these
results amounts to picking a random index into the codeword and
outputting $m$ consecutive symbols (the codeword is obtained from
the weak random source in the case ...
more >>>
We study computational procedures that use both randomness and nondeterminism. Examples are Arthur-Merlin games and approximate counting and sampling of NP-witnesses. The goal of this paper is to derandomize such procedures under the weakest possible assumptions.
Our main technical contribution allows one to ``boost'' a given hardness assumption. One special ... more >>>
We study the complexity of solving succinct zero-sum games,
i.e., the
games whose payoff matrix $M$ is given implicitly by a Boolean circuit
$C$ such that $M(i,j)=C(i,j)$. We complement the known $\EXP$-hardness
of computing the \emph{exact} value of a succinct zero-sum game by
several results on \emph{approximating} the value. (1) ...
more >>>