We give simply exponential lower bounds on the probabilities of a given strongly Rayleigh distribution, depending only on its expectation. This resolves a weak version of a problem left open by Karlin-Klein-Oveis Gharan in their recent breakthrough work on metric TSP, and this resolution leads to a minor improvement of ... more >>>
The purpose of this note is to state and prove a lower bound on the capacity of a real stable polynomial $p(x)$ which is based only on its value and gradient at $x=1$. This result implies a sharp improvement to a similar inequality proved by Linial-Samorodnitsky-Wigderson in 2000. Such inequalities ... more >>>
We prove a new efficiently computable lower bound on the coefficients of stable homogeneous polynomials and present its algorthmic and combinatorial applications. Our main application is the first poly-time deterministic algorithm which approximates the partition functions associated with
boolean matrices with prescribed row and (uniformly bounded) column sums within simply ...
more >>>
Let $A \in \Omega_n$ be doubly-stochastic $n \times n$ matrix. Alexander Schrijver proved in 1998 the following remarkable inequality
\begin{equation} \label{le}
per(\widetilde{A}) \geq \prod_{1 \leq i,j \leq n} (1- A(i,j)); \widetilde{A}(i,j) =: A(i,j)(1-A(i,j)), 1 \leq i,j \leq n
\end{equation}
We prove in this paper the following generalization (or just clever ...
more >>>
We study in this paper randomized algorithms to approximate the mixed volume of well-presented convex compact sets.
Our main result is a poly-time algorithm which approximates $V(K_1,...,K_n)$ with multiplicative error $e^n$ and
with better rates if the affine dimensions of most of the sets $K_i$ are small.\\
Our approach is ...
more >>>
Let $p(x_1,...,x_n) = p(X) , X \in R^{n}$ be a homogeneous polynomial of degree $n$ in $n$ real variables ,
$e = (1,1,..,1) \in R^n$ be a vector of all ones . Such polynomial $p$ is
called $e$-hyperbolic if for all real vectors $X \in R^{n}$ the univariate polynomial
equation ...
more >>>
Consider a homogeneous polynomial $p(z_1,...,z_n)$ of degree $n$ in $n$ complex variables .
Assume that this polynomial satisfies the property : \\
$|p(z_1,...,z_n)| \geq \prod_{1 \leq i \leq n} Re(z_i)$ on the domain $\{(z_1,...,z_n) : Re(z_i) \geq 0 , 1 \leq i \leq n \}$ . \\
We prove that ... more >>>
Let $p(x_1,...,x_n) =\sum_{ (r_1,...,r_n) \in I_{n,n} } a_{(r_1,...,r_n) } \prod_{1 \leq i \leq n} x_{i}^{r_{i}}$
be homogeneous polynomial of degree $n$ in $n$ real variables with integer nonnegative coefficients.
The support of such polynomial $p(x_1,...,x_n)$
is defined as $supp(p) = \{(r_1,...,r_n) \in I_{n,n} : a_{(r_1,...,r_n)} \neq 0 ...
more >>>