The bin packing problem is to find the minimum
number of bins of size one to pack a list of items with sizes
$a_1,\ldots , a_n$ in $(0,1]$. Using uniform sampling, which selects
a random element from the input list each time, we develop a
randomized $O({n(\log n)(\log\log n)\over ...
more >>>
A recursive enumerator for a function $h$ is an algorithm $f$ which
enumerates for an input $x$ finitely many elements including $h(x)$.
$f$ is an $k(n)$-enumerator if for every input $x$ of length $n$, $h(x)$
is among the first $k(n)$ elements enumerated by $f$.
If there is a $k(n)$-enumerator for ...
more >>>
We show that any 1-round 2-server Private Information
Retrieval Protocol where the answers are 1-bit long must ask questions
that are at least $n-2$ bits long, which is nearly equal to the known
$n-1$ upper bound. This improves upon the approximately $0.25n$ lower
bound of Kerenidis and de Wolf while ...
more >>>
Let A(x) be the characteristic function of A. Consider the function
F_k^A(x_1,...,x_k) = A(x_1)...A(x_k). We show that if F_k^A can be
computed with fewer than k queries to some set X, then A can be
computed by polynomial size circuits. A generalization of this result
has applications to bounded query ...
more >>>
<html>
Prior results show that most bounded query hierarchies cannot
contain finite gaps. For example, it is known that
<center>
P<sub>(<i>m</i>+1)-tt</sub><sup>SAT</sup> = P<sub><i>m</i>-tt</sub><sup>SAT</sup> implies P<sub>btt</sub><sup>SAT</sup> = P<sub><i>m</i>-tt</sub><sup>SAT</sup>
</center>
and for all sets <i>A</i>
<ul>
<li> FP<sub>(<i>m</i>+1)-tt</sub><sup><i>A</i></sup> = FP<sub><i>m</i>-tt</sub><sup><i>A</i></sup> implies FP<sub>btt</sub><sup><i>A</i></sup> = FP<sub><i>m</i>-tt</sub><sup><i>A</i></sup>
</li>
<li> P<sub>(<i>m</i>+1)-T</sub><sup><i>A</i></sup> = P<sub><i>m</i>-T</sub><sup><i>A</i></sup> implies P<sub>bT</sub><sup><i>A</i></sup> = ...
more >>>
We investigate the complexity of depth-3 threshold circuits
with majority gates at the output, possibly negated AND
gates at level two, and MODm gates at level one. We show
that the fan-in of the AND gates can be reduced to O(log n)
in the case where ...
more >>>
We demonstrate the use of Kolmogorov complexity in average case
analysis of algorithms through a classical example: adding two $n$-bit
numbers in $\ceiling{\log_2{n}}+2$ steps on average. We simplify the
analysis of Burks, Goldstine, and von Neumann in 1946 and
(in more complete forms) of Briley and of Schay.
The classes of languages accepted by nondeterministic polynomial-time
Turing machines (NP machines, in short) that have restricted access to
an NP oracle --- the machines can ask k queries to the NP oracle and
the answer they receive is the number of queries ...
more >>>
Identify a string x over {0,1} with the positive integer
whose binary representation is 1x. We say that a self-reduction is
k-local if on input x all queries belong to {x-1,...,x-k}. We show
that all k-locally self-reducible sets belong to PSPACE. However, the
power of k-local self-reductions changes drastically between ...
more >>>
For a set A and a number n let F_n^A(x_1,...,x_n) =
A(x_1)\cdots A(x_n). We study how hard it is to approximate this
function in terms of the number of queries required. For a general
set A we have exact bounds that depend on functions from coding
theory. These are applied ...
more >>>
We classify the univariate functions that are relativizable
closure properties of GapP, solving a problem posed by Hertrampf,
Vollmer, and Wagner (Structures '95). We also give a simple proof of
their classification of univariate functions that are relativizable
closure properties of #P.
We consider worst case time bounds for NP-complete problems
including 3-SAT, 3-coloring, 3-edge-coloring, and 3-list-coloring.
Our algorithms are based on a common generalization of these problems,
called symbol-system satisfiability or, briefly, SSS [R. Floyd &
R. Beigel, The Language of Machines]. 3-SAT is equivalent to
(2,3)-SSS while the other problems ...
more >>>