Many problems in computer-aided design of highly integrated circuits
(CAD for VLSI) can be transformed to the task of manipulating objects
over finite domains. The efficiency of these operations depends
substantially on the chosen data structures. In the last years,
ordered binary decision diagrams (OBDDs) have ...
more >>>
The ``log rank'' conjecture consists in the question how exact
the deterministic communication complexity of a problem can be
determinied in terms of algebraic invarants of the communication
matrix of this problem. In the following, we answer this question
in the context of modular communication complexity. ...
more >>>
Reducibility concepts are fundamental in complexity theory.
Usually, they are defined as follows: A problem P is reducible
to a problem S if P can be computed using a program or device
for S as a subroutine. However, in the case of such restricted
models as ...
more >>>
We investigate the probabilistic communication complexity
(more exactly, the majority communication complexity,)
of the graph accessibility problem GAP and
its counting versions MOD_k-GAP, k > 1.
Due to arguments concerning matrix variation ranks
and certain projection reductions, we prove
that, for any partition of the input variables,
more >>>
We prove that the modular communication complexity of the
undirected graph connectivity problem UCONN equals Theta(n),
in contrast to the well-known Theta(n*log n) bound in the
deterministic case, and to the Omega(n*loglog n) lower bound
in the nondeterministic case, recently proved by ...
more >>>