For $S\subseteq \mathbb{F}^n$, consider the linear space of restrictions of degree-$d$ polynomials to $S$. The Hilbert function of $S$, denoted $\mathrm{h}_S(d,\mathbb{F})$, is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets $S$ of arbitrary finite grids in $\mathbb{F}^n$ ... more >>>
We prove that the class of communication problems with public-coin randomized constant-cost protocols, called $BPP^0$, does not contain a complete problem. In other words, there is no randomized constant-cost problem $Q \in BPP^0$, such that all other problems $P \in BPP^0$ can be computed by a constant-cost deterministic protocol with ... more >>>
Several theorems and conjectures in communication complexity state or speculate that the complexity of a matrix in a given communication model is controlled by a related analytic or algebraic matrix parameter, e.g., rank, sign-rank, discrepancy, etc. The forward direction is typically easy as the structural implications of small complexity often ... more >>>
This is a survey of unconditional *pseudorandom generators* (PRGs). A PRG uses a short, truly random seed to generate a long, "pseudorandom" sequence of bits. To be more specific, for each restricted model of computation (e.g., bounded-depth circuits or read-once branching programs), we would like to design a PRG that ... more >>>
For $n \in \mathbb{N}$ and $d = o(\log \log n)$, we prove that there is a Boolean function $F$ on $n$ bits and a value $\gamma = 2^{-\Theta(d)}$ such that $F$ can be computed by a uniform depth-$(d + 1)$ $\text{AC}^0$ circuit with $O(n)$ wires, but $F$ cannot be computed ... more >>>
The sign-rank of a matrix $A$ with $\pm 1$ entries is the smallest rank of a real matrix with the same sign pattern as $A$. To the best of our knowledge, there are only three known methods for proving lower bounds on the sign-rank of explicit matrices: (i) Sign-rank is ... more >>>
The purpose of this article is to initiate a systematic study of dimension-free relations between basic communication and query complexity measures and various matrix norms. In other words, our goal is to obtain inequalities that bound a parameter solely as a function of another parameter. This is in contrast to ... more >>>
We present new constructions of pseudorandom generators (PRGs) for two of the most widely-studied non-uniform circuit classes in complexity theory. Our main result is a construction of the first non-trivial PRG for linear threshold (LTF) circuits of arbitrary constant depth and super-linear size. This PRG fools circuits with depth $d\in\mathbb{N}$ ... more >>>
There are only a few known general approaches for constructing explicit pseudorandom generators (PRGs). The ``iterated restrictions'' approach, pioneered by Ajtai and Wigderson [AW89], has provided PRGs with seed length $\mathrm{polylog} n$ or even $\tilde{O}(\log n)$ for several restricted models of computation. Can this approach ever achieve the optimal seed ... more >>>
A major challenge in complexity theory is to explicitly construct functions that have small correlation with low-degree polynomials over $F_2$. We introduce a new technique to prove such correlation bounds with $F_2$ polynomials. Using this technique, we bound the correlation of an XOR of Majorities with constant degree polynomials. In ... more >>>
The seminal result of Kahn, Kalai and Linial shows that a coalition of $O(\frac{n}{\log n})$ players can bias the outcome of *any* Boolean function $\{0,1\}^n \to \{0,1\}$ with respect to the uniform measure. We extend their result to arbitrary product measures on $\{0,1\}^n$, by combining their argument with a completely ... more >>>
We give an explicit pseudorandom generator (PRG) for constant-depth read-once formulas over the basis $\{\wedge, \vee, \neg\}$ with unbounded fan-in. The seed length of our PRG is $\widetilde{O}(\log(n/\varepsilon))$. Previously, PRGs with near-optimal seed length were known only for the depth-2 case (Gopalan et al. FOCS '12). For a constant depth ... more >>>
A recent work of Chattopadhyay et al. (CCC 2018) introduced a new framework for the design of pseudorandom generators for Boolean functions. It works under the assumption that the Fourier tails of the Boolean functions are uniformly bounded for all levels by an exponential function. In this work, we design ... more >>>
In this paper, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over $GF(2)= \{0,1\}$. We show the following results for multilinear forms and tensors.
1. Correlation bounds : We show that a random $d$-linear ... more >>>
We propose a new framework for constructing pseudorandom generators for $n$-variate Boolean functions. It is based on two new notions. First, we introduce fractional pseudorandom generators, which are pseudorandom distributions taking values in $[-1,1]^n$. Next, we use a fractional pseudorandom generator as steps of a random walk in $[-1,1]^n$ that ... more >>>
We present an explicit pseudorandom generator with seed length $\tilde{O}((\log n)^{w+1})$ for read-once, oblivious, width $w$ branching programs that can read their input bits in any order. This improves upon the work of Impaggliazzo, Meka and Zuckerman (FOCS'12) where they required seed length $n^{1/2+o(1)}$.
A central ingredient in our work ... more >>>
A Boolean function is said to have maximal sensitivity $s$ if $s$ is the largest number of Hamming neighbors of a point which differ from it in function value. We construct a pseudorandom generator with seed-length $2^{O(\sqrt{s})} \cdot \log(n)$ that fools Boolean functions on $n$ variables with maximal sensitivity at ... more >>>
The densities of small linear structures (such as arithmetic progressions) in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate ... more >>>
Let $\mathbb{F} = \mathbb{F}_p$ for any fixed prime $p \geq 2$. An affine-invariant property is a property of functions on $\mathbb{F}^n$ that is closed under taking affine transformations of the domain. We prove that all affine-invariant property having local characterizations are testable. In fact, we show a proximity-oblivious test for ... more >>>