Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author Pooya Hatami:

TR18-081 | 20th April 2018
Abhishek Bhrushundi, Prahladh Harsha, Pooya Hatami, Swastik Kopparty, Mrinal Kumar

On Multilinear Forms: Bias, Correlation, and Tensor Rank

Revisions: 1

In this paper, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over $GF(2)= \{0,1\}$. We show the following results for multilinear forms and tensors.

1. Correlation bounds : We show that a random $d$-linear ... more >>>

TR18-015 | 25th January 2018
Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett

Pseudorandom Generators from Polarizing Random Walks

Revisions: 1 , Comments: 1

We propose a new framework for constructing pseudorandom generators for $n$-variate Boolean functions. It is based on two new notions. First, we introduce fractional pseudorandom generators, which are pseudorandom distributions taking values in $[-1,1]^n$. Next, we use a fractional pseudorandom generator as steps of a random walk in $[-1,1]^n$ that ... more >>>

TR17-171 | 6th November 2017
Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, Avishay Tal

Improved Pseudorandomness for Unordered Branching Programs through Local Monotonicity

Revisions: 1

We present an explicit pseudorandom generator with seed length $\tilde{O}((\log n)^{w+1})$ for read-once, oblivious, width $w$ branching programs that can read their input bits in any order. This improves upon the work of Impaggliazzo, Meka and Zuckerman (FOCS'12) where they required seed length $n^{1/2+o(1)}$.

A central ingredient in our work ... more >>>

TR17-025 | 16th February 2017
Pooya Hatami, Avishay Tal

Pseudorandom Generators for Low-Sensitivity Functions

A Boolean function is said to have maximal sensitivity $s$ if $s$ is the largest number of Hamming neighbors of a point which differ from it in function value. We construct a pseudorandom generator with seed-length $2^{O(\sqrt{s})} \cdot \log(n)$ that fools Boolean functions on $n$ variables with maximal sensitivity at ... more >>>

TR14-040 | 30th March 2014
Hamed Hatami, Pooya Hatami, Shachar Lovett

General systems of linear forms: equidistribution and true complexity

Revisions: 1

The densities of small linear structures (such as arithmetic progressions) in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate ... more >>>

TR12-184 | 26th December 2012
Arnab Bhattacharyya, Eldar Fischer, Hamed Hatami, Pooya Hatami, Shachar Lovett

Every locally characterized affine-invariant property is testable.

Revisions: 1

Let $\mathbb{F} = \mathbb{F}_p$ for any fixed prime $p \geq 2$. An affine-invariant property is a property of functions on $\mathbb{F}^n$ that is closed under taking affine transformations of the domain. We prove that all affine-invariant property having local characterizations are testable. In fact, we show a proximity-oblivious test for ... more >>>

ISSN 1433-8092 | Imprint