We study the problem of partitioning the unit cube $[0,1]^n$ into $c$ parts so that each $d$-dimensional axis-parallel projection has small volume.
This natural combinatorial/geometric question was first studied by Kopparty and Nagargoje [KN23] as a reformulation of the problem of determining the achievable parameters for seedless multimergers -- which ... more >>>
The classical Reed-Muller codes over a finite field $\mathbb{F}_q$ are based on evaluations of $m$-variate polynomials of degree at most $d$ over a product set $U^m$, for some $d$ less than $|U|$. Because of their good distance properties, as well as the ubiquity and expressive power of polynomials, these codes ... more >>>
The Stepanov-Bombieri proof of the Hasse-Weil bound also gives non-trivial bounds on the bias of character sums over curves with small genus, for any low-degree function $f$ that is not completely biased. For high genus curves, and in particular for curves used in AG codes over constant size fields, the ... more >>>
For an odd prime $p$, we say $f(X) \in {\mathbb F}_p[X]$ computes square roots in $\mathbb F_p$ if, for all nonzero perfect squares $a \in \mathbb F_p$, we have $f(a)^2 = a$.
When $p \equiv 3$ mod $4$, it is well known that $f(X) = X^{(p+1)/4}$ computes square ...
more >>>
In this note, we give very simple constructions of unique neighbor expander graphs starting from spectral or combinatorial expander graphs of mild expansion. These constructions and their analysis are simple variants of the constructions of LDPC error-correcting codes from expanders, given by
Sipser-Spielman~\cite{SS96} (and Tanner~\cite{Tanner81}), and their analysis. We also ...
more >>>
We study the problem of extracting randomness from somewhere random sources, and related combinatorial phenomena: partition analogues of Shearer's lemma on projections.
A somewhere-random source is a tuple $(X_1, \ldots, X_t)$ of (possibly correlated) $\{0,1\}^n$-valued random variables $X_i$ where for some unknown $i \in [t]$, $X_i$ is guaranteed to be ... more >>>
Concretely efficient interactive oracle proofs (IOPs) are of interest due to their applications to scaling blockchains, their minimal security assumptions, and their potential future-proof resistance to quantum attacks.
Scalable IOPs, in which prover time scales quasilinearly with the computation size and verifier time scales poly-logarithmically with it, have been known ... more >>>
Over finite fields $F_q$ containing a root of unity of smooth order $n$ (smoothness means $n$ is the product of small primes), the Fast Fourier Transform (FFT) leads to the fastest known algebraic algorithms for many basic polynomial operations, such as multiplication, division, interpolation and multi-point evaluation. These operations can ... more >>>
A collection of sets displays a proximity gap with respect to some property if for every set in the collection, either (i) all members are $\delta$-close to the property in relative Hamming distance or (ii) only a tiny fraction of members are $\delta$-close to the property. In particular, no set ... more >>>
Motivated by problems in algebraic complexity theory (e.g., matrix multiplication) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the ... more >>>
We consider codes for space bounded channels. This is a model for communication under noise that was studied by Guruswami and Smith (J. ACM 2016) and lies between the Shannon (random) and Hamming (adversarial) models. In this model, a channel is a space bounded procedure that reads the codeword in ... more >>>
In this paper, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over $GF(2)= \{0,1\}$. We show the following results for multilinear forms and tensors.
1. Correlation bounds : We show that a random $d$-linear ... more >>>
We survey the state of the art in constructions of locally testable
codes, locally decodable codes and locally correctable codes of high rate.
One of the most important open problems in the theory
of error-correcting codes is to determine the
tradeoff between the rate $R$ and minimum distance $\delta$ of a binary
code. The best known tradeoff is the Gilbert-Varshamov bound,
and says that for every $\delta \in (0, 1/2)$, there are ...
more >>>
In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist binary LCCs and LTCs with block length $n$, constant rate (which can even be taken arbitrarily close to 1), constant ... more >>>
We study the problem of indexing irreducible polynomials over finite fields, and give the first efficient algorithm for this problem. Specifically, we show the existence of poly(n, log q)-size circuits that compute a bijection between {1, ... , |S|} and the set S of all irreducible, monic, univariate polynomials of ... more >>>
In this paper we show that the problem of deterministically factoring multivariate polynomials reduces to the problem of deterministic polynomial identity testing. Specifically, we show that given an arithmetic circuit (either explicitly or via black-box access) that computes a polynomial $f(X_1,\ldots,X_n)$, the task of computing arithmetic circuits for the factors ... more >>>
We study the list-decodability of multiplicity codes. These codes, which are based on evaluations of high-degree polynomials and their derivatives, have rate approaching $1$ while simultaneously allowing for sublinear-time error-correction. In this paper, we show that multiplicity codes also admit powerful list-decoding and local list-decoding algorithms correcting a large fraction ... more >>>
Locally decodable codes are error-correcting codes that admit efficient decoding algorithms; any bit of the original message can be recovered by looking at only a small number of locations of a corrupted codeword. The tradeoff between the rate of a code and the locality/efficiency of its decoding algorithms has been ... more >>>
{\em Dispersers} and {\em extractors} for affine sources of dimension $d$ in $\mathbb F_p^n$ --- where $\mathbb F_p$ denotes the finite field of prime size $p$ --- are functions $f: \mathbb F_p^n \rightarrow \mathbb F_p$ that behave pseudorandomly when their domain is restricted to any particular affine space $S \subseteq ... more >>>
For every fixed finite field $\F_q$, $p \in (0,1-1/q)$ and $\varepsilon >
0$, we prove that with high probability a random subspace $C$ of
$\F_q^n$ of dimension $(1-H_q(p)-\varepsilon)n$ has the
property that every Hamming ball of radius $pn$ has at most
$O(1/\varepsilon)$ codewords.
This ... more >>>
In this paper, we give surprisingly efficient algorithms for list-decoding and testing
{\em random} linear codes. Our main result is that random sparse linear codes are locally testable and locally list-decodable
in the {\em high-error} regime with only a {\em constant} number of queries.
More precisely, we show that ...
more >>>
We consider the problem of testing if a given function
$f : \F_2^n \rightarrow \F_2$ is close to any degree $d$ polynomial
in $n$ variables, also known as the Reed-Muller testing problem.
Alon et al.~\cite{AKKLR} proposed and analyzed a natural
$2^{d+1}$-query test for this property and showed that it accepts
more >>>
The classical zero-one law for first-order logic on random graphs says that for every first-order property $\varphi$ in the theory of graphs and every $p \in (0,1)$, the probability that the random graph $G(n, p)$ satisfies $\varphi$ approaches either $0$ or $1$ as $n$ approaches infinity. It is well known ... more >>>
We extend the ``method of multiplicities'' to get the following results, of interest in combinatorics and randomness extraction.
\begin{enumerate}
\item We show that every Kakeya set in $\F_q^n$, the $n$-dimensional vector space over the finite field on $q$ elements, must be of size at least $q^n/2^n$. This bound is tight ...
more >>>
Given a pair of finite groups $G$ and $H$, the set of homomorphisms from $G$ to $H$ form an error-correcting code where codewords differ in at least $1/2$ the coordinates. We show that for every pair of {\em abelian} groups $G$ and $H$, the resulting code is (locally) list-decodable from ... more >>>