A local tester for a code probabilistically looks at a given word at a small set of coordinates and based on this local view accepts codewords with probability one while rejecting words far from the code with constant probabilility. A local tester for a code is said to be ``robust'' ... more >>>
We present a general framework for constructing high rate error correcting codes that are locally correctable (and hence locally decodable if linear) with a sublinear number of queries, based on lifting codes with respect to functions on the coordinates. Our approach generalizes the lifting of affine-invariant codes of Guo, Kopparty, ... more >>>
In this work we explore error-correcting codes derived from
the ``lifting'' of ``affine-invariant'' codes.
Affine-invariant codes are simply linear codes whose coordinates
are a vector space over a field and which are invariant under
affine-transformations of the coordinate space. Lifting takes codes
defined over a vector space of small dimension ...
more >>>
In this work we explore error-correcting codes derived from
the ``lifting'' of ``affine-invariant'' codes.
Affine-invariant codes are simply linear codes whose coordinates
are a vector space over a field and which are invariant under
affine-transformations of the coordinate space. Lifting takes codes
defined over a vector space of small dimension ...
more >>>
We prove that the class of locally testable affine-invariant properties is closed under sums, intersections and "lifts". The sum and intersection are two natural operations on linear spaces of functions, where the sum of two properties is simply their sum as a vector space. The "lift" is a less natural ... more >>>