A two-party coin-flipping protocol is $\varepsilon$-fair if no efficient adversary can bias the output of the honest party (who always outputs a bit, even if the other party aborts) by more than $\varepsilon$. Cleve [STOC '86] showed that $r$-round $o(1/r)$-fair coin-flipping protocols do not exist. Awerbuch et al. [Manuscript '85] ... more >>>
Let $\pi$ be an efficient two-party protocol that given security parameter $\kappa$, both parties output single bits $X_\kappa$ and $Y_\kappa$, respectively. We are interested in how $(X_\kappa,Y_\kappa)$ ``appears'' to an efficient adversary that only views the transcript $T_\kappa$. We make the following contributions:
\begin{itemize}
\item We develop new tools to ...
more >>>
In his seminal work, Cleve [STOC 1986] has proved that any r-round coin-flipping protocol can be efficiently biassed by ?(1/r). The above lower bound was met for the two-party case by Moran, Naor, and Segev [Journal of Cryptology '16], and the three-party case (up to a polylog factor) by Haitner ... more >>>
In the random oracle model, the parties are given oracle access to a random member of
a (typically huge) function family, and are assumed to have unbounded computational power
(though they can only make a bounded number of oracle queries). This model provides powerful
properties that allow proving the security ...
more >>>