Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > VLADIMIR PODOLSKII:
All reports by Author Vladimir Podolskii:

TR24-199 | 3rd December 2024
Vladimir Podolskii, Alexander Shekhovtsov

Randomized Lifting to Semi-Structured Communication Complexity via Linear Diversity

We study query-to-communication lifting. The major open problem in this area is to prove a lifting theorem for gadgets of constant size. The recent paper (Beame, Koroth, 2023) introduces semi-structured communication complexity, in which one of the players can only send parities of their input bits. They have shown that ... more >>>


TR24-025 | 13th February 2024
Mason DiCicco, Vladimir Podolskii, Daniel Reichman

Nearest Neighbor Complexity and Boolean Circuits

Revisions: 1

A nearest neighbor representation of a Boolean function $f$ is a set of vectors (anchors) labeled by $0$ or $1$ such that $f(x) = 1$ if and only if the closest anchor to $x$ is labeled by $1$. This model was introduced by Hajnal, Liu, and TurĂ¡n (2022), who studied ... more >>>


TR23-157 | 31st October 2023
Vladimir Podolskii, Dmitrii Sluch

One-Way Communication Complexity of Partial XOR Functions

Revisions: 1

Boolean function $F(x,y)$ for $x,y \in \{0,1\}^n$ is an XOR function if $F(x,y) = f(x\oplus y)$ for some function $f$ on $n$ input bits, where $\oplus$ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing Fourier analytic technique. For total XOR functions it is known ... more >>>


TR23-153 | 19th October 2023
Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, Vladimir Podolskii

Towards Simpler Sorting Networks and Monotone Circuits for Majority

In this paper, we study the problem of computing the majority function by low-depth monotone circuits and a related problem of constructing low-depth sorting networks. We consider both the classical setting with elementary operations of arity $2$ and the generalized setting with operations of arity $k$, where $k$ is a ... more >>>


TR22-116 | 17th August 2022
Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, Vladimir Podolskii

Constant-Depth Sorting Networks

In this paper, we address sorting networks that are constructed from comparators of arity $k > 2$. That is, in our setting the arity of the comparators -- or, in other words, the number of inputs that can be sorted at the unit cost -- is a parameter. We study ... more >>>


TR20-017 | 18th February 2020
Alexander Kozachinskiy, Vladimir Podolskii

Multiparty Karchmer-Wigderson Games and Threshold Circuits

Revisions: 1

We suggest a generalization of Karchmer-Wigderson communication games to the multiparty setting. Our generalization turns out to be tightly connected to circuits consisting of threshold gates. This allows us to obtain new explicit constructions of such circuits for several functions. In particular, we provide an explicit (polynomial-time computable) log-depth monotone ... more >>>


TR19-002 | 31st December 2018
Alexander Kulikov, Ivan Mikhailin, Andrey Mokhov, Vladimir Podolskii

Complexity of Linear Operators

Let $A \in \{0,1\}^{n \times n}$ be a matrix with $z$ zeroes and $u$ ones and $x$ be an $n$-dimensional vector of formal variables over a semigroup $(S, \circ)$. How many semigroup operations are required to compute the linear operator $Ax$?

As we observe in this paper, this problem contains ... more >>>


TR18-174 | 19th October 2018
Anastasiya Chistopolskaya, Vladimir Podolskii

Parity Decision Tree Complexity is Greater Than Granularity

Revisions: 2

We prove a new lower bound on the parity decision tree complexity $D_{\oplus}(f)$ of a Boolean function $f$. Namely, granularity of the Boolean function $f$ is the smallest $k$ such that all Fourier coefficients of $f$ are integer multiples of $1/2^k$. We show that $D_{\oplus}(f)\geq k+1$.

This lower bound is ... more >>>


TR17-184 | 29th November 2017
Vladimir Podolskii, Alexander A. Sherstov

Inner Product and Set Disjointness: Beyond Logarithmically Many Parties

A basic goal in complexity theory is to understand the communication complexity of number-on-the-forehead problems $f\colon(\{0,1\}^n)^{k}\to\{0,1\}$ with $k\gg\log n$ parties. We study the problems of inner product and set disjointness and determine their randomized communication complexity for every $k\geq\log n$, showing in both cases that $\Theta(1+\lceil\log n\rceil/\log\lceil1+k/\log n\rceil)$ bits are ... more >>>


TR16-158 | 9th October 2016
Alexander Kulikov, Vladimir Podolskii

Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates

We study the following computational problem: for which values of $k$, the majority of $n$ bits $\text{MAJ}_n$ can be computed with a depth two formula whose each gate computes a majority function of at most $k$ bits? The corresponding computational model is denoted by $\text{MAJ}_k \circ \text{MAJ}_k$. We observe that ... more >>>


TR13-021 | 5th February 2013
Kristoffer Arnsfelt Hansen, Vladimir Podolskii

Polynomial threshold functions and Boolean threshold circuits

We study the complexity of computing Boolean functions on general
Boolean domains by polynomial threshold functions (PTFs). A typical
example of a general Boolean domain is $\{1,2\}^n$. We are mainly
interested in the length (the number of monomials) of PTFs, with
their degree and weight being of secondary interest. We ... more >>>




ISSN 1433-8092 | Imprint