A nearest neighbor representation of a Boolean function $f$ is a set of vectors (anchors) labeled by $0$ or $1$ such that $f(x) = 1$ if and only if the closest anchor to $x$ is labeled by $1$. This model was introduced by Hajnal, Liu, and TurĂ¡n (2022), who studied ... more >>>
Boolean function $F(x,y)$ for $x,y \in \{0,1\}^n$ is an XOR function if $F(x,y) = f(x\oplus y)$ for some function $f$ on $n$ input bits, where $\oplus$ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing Fourier analytic technique. For total XOR functions it is known ... more >>>
In this paper, we study the problem of computing the majority function by low-depth monotone circuits and a related problem of constructing low-depth sorting networks. We consider both the classical setting with elementary operations of arity $2$ and the generalized setting with operations of arity $k$, where $k$ is a ... more >>>
In this paper, we address sorting networks that are constructed from comparators of arity $k > 2$. That is, in our setting the arity of the comparators -- or, in other words, the number of inputs that can be sorted at the unit cost -- is a parameter. We study ... more >>>
We suggest a generalization of Karchmer-Wigderson communication games to the multiparty setting. Our generalization turns out to be tightly connected to circuits consisting of threshold gates. This allows us to obtain new explicit constructions of such circuits for several functions. In particular, we provide an explicit (polynomial-time computable) log-depth monotone ... more >>>
Let $A \in \{0,1\}^{n \times n}$ be a matrix with $z$ zeroes and $u$ ones and $x$ be an $n$-dimensional vector of formal variables over a semigroup $(S, \circ)$. How many semigroup operations are required to compute the linear operator $Ax$?
As we observe in this paper, this problem contains ... more >>>
We prove a new lower bound on the parity decision tree complexity $D_{\oplus}(f)$ of a Boolean function $f$. Namely, granularity of the Boolean function $f$ is the smallest $k$ such that all Fourier coefficients of $f$ are integer multiples of $1/2^k$. We show that $D_{\oplus}(f)\geq k+1$.
This lower bound is ... more >>>
A basic goal in complexity theory is to understand the communication complexity of number-on-the-forehead problems $f\colon(\{0,1\}^n)^{k}\to\{0,1\}$ with $k\gg\log n$ parties. We study the problems of inner product and set disjointness and determine their randomized communication complexity for every $k\geq\log n$, showing in both cases that $\Theta(1+\lceil\log n\rceil/\log\lceil1+k/\log n\rceil)$ bits are ... more >>>
We study the following computational problem: for which values of $k$, the majority of $n$ bits $\text{MAJ}_n$ can be computed with a depth two formula whose each gate computes a majority function of at most $k$ bits? The corresponding computational model is denoted by $\text{MAJ}_k \circ \text{MAJ}_k$. We observe that ... more >>>
We study the complexity of computing Boolean functions on general
Boolean domains by polynomial threshold functions (PTFs). A typical
example of a general Boolean domain is $\{1,2\}^n$. We are mainly
interested in the length (the number of monomials) of PTFs, with
their degree and weight being of secondary interest. We ...
more >>>