The two-player pebble game of Dymond–Tompa is identified as a barrier for existing techniques to save space or to speed up parallel algorithms for evaluation problems.
Many combinatorial lower bounds to study L versus NL and NC versus P under different restricted settings scale in the same way as the ... more >>>
We prove tight size bounds on monotone switching networks for the NP-complete problem of
$k$-clique, and for an explicit monotone problem by analyzing a pyramid structure of height $h$ for
the P-complete problem of generation. This gives alternative proofs of the separations of m-NC
from m-P and of m-NC$^i$ from ...
more >>>