Let $f: \{0,1\}^n \to \{0, 1\}$ be a boolean function, and let $f_\land (x, y) = f(x \land y)$ denote the AND-function of $f$, where $x \land y$ denotes bit-wise AND. We study the deterministic communication complexity of $f_\land$ and show that, up to a $\log n$ factor, it is ... more >>>
This paper is motivated by seeking lower bounds on OBDD($\land$, weakening, reordering) refutations, namely OBDD refutations that allow weakening and arbitrary reorderings. We first work with 1-NBP($\land$) refutations based on read-once nondeterministic branching programs. These generalize OBDD($\land$, reordering) refutations. There are polynomial size 1-NBP($\land$) refutations of the pigeonhole principle, hence ... more >>>
In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that prove unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs representing clauses of the initial formula. All OBDDs in such proofs have the same order of variables. We initiate the study of OBDD based ... more >>>
Most of the research in communication complexity theory is focused on the
fixed-partition model (in this model the partition of the input between
Alice and Bob is fixed). Nonetheless, the best-partition model (the model
that allows Alice and Bob to choose the partition) has a lot of
more >>>
Atserias, Kolaitis, and Vardi [AKV04] showed that the proof system of Ordered Binary Decision Diagrams with conjunction and weakening, OBDD($\land$, weakening), simulates CP* (Cutting Planes with unary coefficients). We show that OBDD($\land$, weakening) can give exponentially shorter proofs than dag-like cutting planes. This is proved by showing that the Clique-Coloring ... more >>>
It is well-known that there is equivalence between ordered resolution and ordered binary decision diagrams (OBDD) [LNNW95]; i.e., for any unsatisfiable formula ?, the size of the smallest ordered resolution refutation of ? equal to the size of the smallest OBDD for the canonical search problem corresponding to ?. But ... more >>>
In this paper, we study quantum OBDD model, it is a restricted version of read-once quantum branching programs, with respect to "width" complexity. It is known that the maximal gap between deterministic and quantum complexities is exponential. But there are few examples of functions with such a gap. We present ... more >>>
Itsykson and Sokolov in 2014 introduced the class of DPLL($\oplus$) algorithms that solve Boolean satisfiability problem using the splitting by linear combinations of variables modulo 2. This class extends the class of DPLL algorithms that split by variables. DPLL($\oplus$) algorithms solve in polynomial time systems of linear equations modulo two ... more >>>
Although a simple counting argument shows the existence of Boolean functions of exponential circuit complexity, proving superlinear circuit lower bounds for explicit functions seems to be out of reach of the current techniques. There has been a (very slow) progress in proving linear lower bounds with the latest record of ... more >>>
We address a natural question in average-case complexity: does there exist a language $L$ such that for all easy distributions $D$ the distributional problem $(L, D)$ is easy on the average while there exists some more hard distribution $D'$ such that $(L, D')$ is hard on the average? We consider ... more >>>
We give a new simple proof of the time hierarchy theorem for heuristic BPP originally proved by Fortnow and Santhanam [FS04] and then simplified and improved by Pervyshev [P07]. In the proof we use a hierarchy theorem for sampling distributions recently proved by Watson [W13]. As a byproduct we get ... more >>>
Santhanam (2007) proved that MA/1 does not have circuits of size $n^k$. We translate his result to the heuristic setting by proving that there is a constant $a$ such that for any $k$, there is a language in HeurMA that cannot be solved by circuits of size $n^k$ on more ... more >>>