For any Boolean functions $f$ and $g$, the question whether $\text{R}(f\circ g) = \tilde{\Theta}(\text{R}(f) \cdot \text{R}(g))$, is known as the composition question for the randomized query complexity. Similarly, the composition question for the approximate degree asks whether $\widetilde{\text{deg}}(f\circ g) = \tilde{\Theta}(\widetilde{\text{deg}}(f)\cdot\widetilde{\text{deg}}(g))$. These questions are two of the most important and ... more >>>
We present a Karchmer-Wigderson game to study the complexity of hazard-free formulas. This new game is both a generalization of the monotone Karchmer-Wigderson game and an analog of the classical Boolean Karchmer-Wigderson game. Therefore, it acts as a bridge between the existing monotone and general games.
Using this game, we ... more >>>
Nisan showed in 1991 that the width of a smallest noncommutative single-(source,sink) algebraic branching program (ABP) to compute a noncommutative polynomial is given by the ranks of specific matrices. This means that the set of noncommutative polynomials with ABP width complexity at most $k$ is Zariski-closed, an important property in ... more >>>
Given a Boolean function $f: \{-1,1\}^n\rightarrow \{-1,1\}$, define the Fourier distribution to be the distribution on subsets of $[n]$, where each $S\subseteq [n]$ is sampled with probability $\widehat{f}(S)^2$. The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [FK96] seeks to relate two fundamental measures associated with the Fourier distribution: does ... more >>>
We provide a list of new natural VNP-intermediate polynomial
families, based on basic (combinatorial) NP-complete problems that
are complete under \emph{parsimonious} reductions. Over finite
fields, these families are in VNP, and under the plausible
hypothesis $\text{Mod}_pP \not\subseteq P/\text{poly}$, are neither VNP-hard (even under
oracle-circuit reductions) nor in VP. Prior to ...
more >>>
The VP versus VNP question, introduced by Valiant, is probably the most important open question in algebraic complexity theory. Thanks to completeness results, a variant of this question, VBP versus VNP, can be succinctly restated as asking whether the permanent of a generic matrix can be written as a determinant ... more >>>
We give a deterministic #SAT algorithm for de Morgan formulas of size up to $n^{2.63}$, which runs in time $2^{n-n^{\Omega(1)}}$. This improves upon the deterministic #SAT algorithm of \cite{CKKSZ13}, which has similar running time but works only for formulas of size less than $n^{2.5}$.
Our new algorithm is based on ... more >>>
iven a function $f : \{0,1\}^n \to \reals$, its {\em Fourier Entropy} is defined to be $-\sum_S \fcsq{f}{S} \log \fcsq{f}{S}$, where $\fhat$ denotes the Fourier transform of $f$. This quantity arises in a number of applications, especially in the study of Boolean functions. An outstanding open question is a conjecture ... more >>>