Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > ANDRZEJ LINGAS:
All reports by Author Andrzej Lingas:

TR22-085 | 8th June 2022
Andrzej Lingas

A Note on Lower Bounds for Monotone Multilinear Boolean Circuits

A monotone Boolean circuit is a restriction of a Boolean circuit
allowing for the use of disjunctions, conjunctions, the Boolean
constants, and the input variables. A monotone Boolean circuit is
multilinear if for any AND gate the two input functions have no
variable in common. We ... more >>>


TR18-154 | 7th September 2018
Stasys Jukna, Andrzej Lingas

Lower Bounds for Circuits of Bounded Negation Width

We consider Boolean circuits over $\{\lor,\land,\neg\}$ with negations applied only to input variables. To measure the ``amount of negation'' in such circuits, we introduce the concept of their ``negation width.'' In particular, a circuit computing a monotone Boolean function $f(x_1,\ldots,x_n)$ has negation width $w$ if no nonzero term produced (purely ... more >>>


TR18-108 | 1st June 2018
Andrzej Lingas

Small Normalized Boolean Circuits for Semi-disjoint Bilinear Forms Require Logarithmic Conjunction-depth

We consider normalized Boolean circuits that use binary operations of disjunction and conjunction, and unary negation, with the restriction that negation can be only applied to input variables. We derive a lower bound trade-off between the size of normalized Boolean circuits computing Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., ... more >>>


TR14-039 | 28th March 2014
Andrzej Lingas

Vector convolution in O(n) steps and matrix multiplication in O(n^2) steps :-)

Revisions: 1

We observe that if we allow for the use of
division and the floor function
besides multiplication, addition and
subtraction then we can
compute the arithmetic convolution
of two n-dimensional integer vectors in O(n) steps and
perform the arithmetic matrix multiplication
of two integer n times n matrices ... more >>>


TR13-139 | 7th October 2013
Peter Floderus, Andrzej Lingas, Mia Persson, Dzmitry Sledneu

Detecting Monomials with $k$ Distinct Variables

We study the complexity of detecting monomials
with special properties in the sum-product
expansion of a polynomial represented by an arithmetic
circuit of size polynomial in the number of input
variables and using only multiplication and addition.
We focus on monomial properties expressed in terms
of the number of distinct ... more >>>


TR12-176 | 14th December 2012
Marek Karpinski, Andrzej Lingas, Dzmitry Sledneu

Optimal Cuts and Partitions in Tree Metrics in Polynomial Time

We present a polynomial time dynamic programming algorithm for optimal partitions in the shortest path metric induced by a tree. This resolves, among other things, the exact complexity status of the optimal partition problems in one dimensional geometric metric settings. Our method of solution could be also of independent interest ... more >>>


TR06-115 | 26th July 2006
Artur Czumaj, Andrzej Lingas

Finding a Heaviest Triangle is not Harder than Matrix Multiplication

We show that for any $\epsilon > 0$, a maximum-weight triangle in an
undirected graph with $n$ vertices and real weights assigned to
vertices can be found in time $\O(n^{\omega} + n^{2 + \epsilon})$,
where $\omega $ is the exponent of fastest matrix multiplication
algorithm. By the currently best bound ... more >>>


TR06-111 | 18th July 2006
Artur Czumaj, Miroslaw Kowaluk, Andrzej Lingas

Faster algorithms for finding lowest common ancestors in directed acyclic graphs

Revisions: 2

We present two new methods for finding a lowest common ancestor (LCA)
for each pair of vertices of a directed acyclic graph (dag) on
n vertices and m edges.

The first method is a natural approach that solves the all-pairs LCA
problem for the input dag in time O(nm).

The ... more >>>


TR04-039 | 21st April 2004
Andrzej Lingas, Martin Wahlén

On approximation of the maximum clique minor containment problem and some subgraph homeomorphism problems

We consider the ``minor'' and ``homeomorphic'' analogues of the maximum clique problem, i.e., the problems of determining the largest $h$ such that the input graph has a minor isomorphic to $K_h$ or a subgraph homeomorphic to $K_h,$ respectively.We show the former to be approximable within $O(\sqrt {n} \log^{1.5} n)$ by ... more >>>


TR00-064 | 29th August 2000
Klaus Jansen, Marek Karpinski, Andrzej Lingas

A Polynomial Time Approximation Scheme for MAX-BISECTION on Planar Graphs

The Max-Bisection and Min-Bisection are the problems of finding
partitions of the vertices of a given graph into two equal size subsets so as
to maximize or minimize, respectively, the number of edges with exactly one
endpoint in each subset.
In this paper we design the first ... more >>>


TR00-051 | 14th July 2000
Marek Karpinski, Miroslaw Kowaluk, Andrzej Lingas

Approximation Algorithms for MAX-BISECTION on Low Degree Regular Graphs and Planar Graphs

The max-bisection problem is to find a partition of the vertices of a
graph into two equal size subsets that maximizes the number of edges with
endpoints in both subsets.
We obtain new improved approximation ratios for the max-bisection problem on
the low degree $k$-regular graphs for ... more >>>




ISSN 1433-8092 | Imprint