Ar\i kan's exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shannon capacity. Given a (constant-sized) invertible matrix $M$, a family of polar codes can be associated with this matrix and its ability to approach capacity follows from the $\textit{polarization}$ of an associated $[0,1]$-bounded martingale, ... more >>>
We prove tight network topology dependent bounds on the round complexity of computing well studied $k$-party functions such as set disjointness and element distinctness. Unlike the usual case in the CONGEST model in distributed computing, we fix the function and then vary the underlying network topology. This complements the recent ... more >>>
In this work, we introduce a framework to study the effect of random operations on the combinatorial list decodability of a code.
The operations we consider correspond to row and column operations on the matrix obtained from the code by stacking the codewords together as columns. This captures many natural ...
more >>>
We provide the first communication lower bounds that are sensitive to the network topology for computing natural and simple functions by point to point message passing protocols for the `Number in Hand' model. All previous lower bounds were either for the broadcast model or assumed full connectivity of the network. ... more >>>
We show that any $q$-ary code with sufficiently good distance can be randomly punctured to obtain, with high probability, a code that is list decodable up to radius $1 - 1/q - \epsilon$ with near-optimal rate and list sizes.
Our results imply that ``most" Reed-Solomon codes are list decodable ... more >>>
We study the circuit complexity of linear transformations between Galois fields GF(2^{mn}) and their isomorphic composite fields GF((2^{m})^n). For such a transformation, we show a lower bound of \Omega(mn) on the number of gates required in any circuit consisting of constant-fan-in XOR gates, except for a class of transformations between ... more >>>
We consider the following problem that arises in outsourced storage: a user stores her data $x$ on a remote server but wants to audit the server at some later point to make sure it actually did store $x$. The goal is to design a (randomized) verification protocol that has the ... more >>>
We prove the following results concerning the list decoding of error-correcting codes:
We show that for any code with a relative distance of $\delta$
(over a large enough alphabet), the
following result holds for random errors: With high probability,
for a $\rho\le \delta -\eps$ fraction of random errors (for any ...
more >>>
It has been known since [Zyablov and Pinsker 1982] that a random $q$-ary code of rate $1-H_q(\rho)-\eps$ (where $0<\rho<1-1/q$, $\eps>0$ and $H_q(\cdot)$ is the $q$-ary entropy function) with high probability is a $(\rho,1/\eps)$-list decodable code. (That is, every Hamming ball of radius at most $\rho n$ has at most $1/\eps$ ... more >>>
We prove that binary linear concatenated codes with an outer algebraic code (specifically, a folded Reed-Solomon code) and independently and randomly chosen linear inner codes achieve the list-decoding capacity with high probability. In particular, for any $0 < \rho < 1/2$ and $\epsilon > 0$, there exist concatenated codes of ... more >>>
We construct binary linear codes that are efficiently list-decodable
up to a fraction $(1/2-\eps)$ of errors. The codes encode $k$ bits
into $n = {\rm poly}(k/\eps)$ bits and are constructible and
list-decodable in time polynomial in $k$ and $1/\eps$ (in
particular, in our results $\eps$ need ...
more >>>
We give a polynomial time construction of binary codes with the best
currently known trade-off between rate and error-correction
radius. Specifically, we obtain linear codes over fixed alphabets
that can be list decoded in polynomial time up to the so called
Blokh-Zyablov bound. Our work ...
more >>>
For every $0 < R < 1$ and $\eps > 0$, we present an explicit
construction of error-correcting codes of rate $R$ that can be list
decoded in polynomial time up to a fraction $(1-R-\eps)$ of errors.
These codes achieve the ``capacity'' for decoding from {\em ...
more >>>
We consider the following simple algorithm for feedback arc set problem in weighted tournaments --- order the vertices by their weighted indegrees. We show that this algorithm has an approximation guarantee of $5$ if the weights satisfy \textit{probability constraints}
(for any pair of vertices $u$ and $v$, $w_{uv}+w_{vu}=1$). Special cases ...
more >>>
Ben-Sasson and Sudan in~\cite{BS04} asked if the following test
is robust for the tensor product of a code with another code--
pick a row (or column) at random and check if the received word restricted to the picked row (or column) belongs to the corresponding code. Valiant showed that ...
more >>>
An error-correcting code is said to be {\em locally testable} if it has an
efficient spot-checking procedure that can distinguish codewords
from strings that are far from every codeword, looking at very few
locations of the input in doing so. Locally testable codes (LTCs) have
generated ...
more >>>