Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > JACK H. LUTZ:
All reports by Author Jack H. Lutz:

TR15-140 | 26th August 2015
Adam Case, Jack H. Lutz, Donald Stull

Reachability Problems for Continuous Chemical Reaction Networks

Chemical reaction networks (CRNs) model the behavior of molecules in a well-mixed system. The emerging field of molecular programming uses CRNs not only as a descriptive tool, but as a programming language for chemical computation. Recently, Chen, Doty and Soloveichik introduced a new model of chemical kinetics, rate-independent continuous CRNs ... more >>>


TR14-133 | 15th October 2014
Adam Case, Jack H. Lutz

Mutual Dimension

We define the lower and upper mutual dimensions $mdim(x:y)$ and $Mdim(x:y)$ between any two points $x$ and $y$ in Euclidean space. Intuitively these are the lower and upper densities of the algorithmic information shared by $x$ and $y$. We show that these quantities satisfy the main desiderata for a satisfactory ... more >>>


TR14-015 | 24th January 2014
Jack H. Lutz, Neil Lutz

Lines Missing Every Random Point

Revisions: 1

This paper proves that there is, in every direction in Euclidean space, a line that misses every computably random point. Our proof of this fact shows that a famous set constructed by Besicovitch in 1964 has computable measure 0.

more >>>

TR13-161 | 23rd October 2013
Jack H. Lutz

The Frequent Paucity of Trivial Strings

Revisions: 1

A 1976 theorem of Chaitin, strengthening a 1969 theorem of Meyer,says that infinitely many lengths n have a paucity of trivial strings (only a bounded number of strings of length n having trivially low plain Kolmogorov complexities). We use the probabilistic method to give a new proof of this fact. ... more >>>


TR10-032 | 19th January 2010
Jack H. Lutz, Brad Shutters

Approximate Self-Assembly of the Sierpinski Triangle

The Tile Assembly Model is a Turing universal model that Winfree introduced in order to study the nanoscale self-assembly of complex (typically aperiodic) DNA crystals. Winfree exhibited a self-assembly that tiles the first quadrant of the Cartesian plane with specially labeled tiles appearing at exactly the positions of points in ... more >>>


TR09-022 | 16th February 2009
Jack H. Lutz, Elvira Mayordomo

Inseparability and Strong Hypotheses for Disjoint NP Pairs

Revisions: 1

This paper investigates the existence of inseparable disjoint
pairs of NP languages and related strong hypotheses in
computational complexity. Our main theorem says that, if NP does
not have measure 0 in EXP, then there exist disjoint pairs of NP
languages that are P-inseparable, in fact TIME(2^(n^k)-inseparable.
We also relate ... more >>>


TR08-106 | 12th November 2008
Jack H. Lutz

A Divergence Formula for Randomness and Dimension

If $S$ is an infinite sequence over a finite alphabet $\Sigma$ and $\beta$ is a probability measure on $\Sigma$, then the {\it dimension} of $ S$ with respect to $\beta$, written $\dim^\beta(S)$, is a constructive version of Billingsley dimension that coincides with the (constructive Hausdorff) dimension $\dim(S)$ when $\beta$ is ... more >>>


TR08-037 | 29th February 2008
Xiaoyang Gu, Jack H. Lutz, Elvira Mayordomo

Curves That Must Be Retraced

Revisions: 1

We exhibit a polynomial time computable plane curve GAMMA that has finite length, does not intersect itself, and is smooth except at one endpoint, but has the following property. For every computable parametrization f of GAMMA and every positive integer n, there is some positive-length subcurve of GAMMA that f ... more >>>


TR08-035 | 18th February 2008
James I. Lathrop, Jack H. Lutz, Scott M. Summers

Strict Self-Assembly of Discrete Sierpinski Triangles

Winfree (1998) showed that discrete Sierpinski triangles can self-assemble in the Tile Assembly Model. A striking molecular realization of this self-assembly, using DNA tiles a few nanometers long and verifying the results by atomic-force microscopy, was achieved by Rothemund, Papadakis, and Winfree (2004). Precisely speaking, the above self-assemblies tile completely ... more >>>


TR08-031 | 14th January 2008
James I. Lathrop, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers

Computability and Complexity in Self-Assembly

This paper explores the impact of geometry on computability =
and complexity in
Winfree's model of nanoscale self-assembly. We work in the =
two-dimensional
tile assembly model, i.e., in the discrete Euclidean plane Z x Z. Our =
first
main theorem says that there is a roughly quadratic function f ... more >>>


TR06-038 | 10th February 2006
David Doty, Jack H. Lutz, Satyadev Nandakumar

Finite-State Dimension and Real Arithmetic

We use entropy rates and Schur concavity to prove that, for every integer k >= 2, every nonzero rational number q, and every real number alpha, the base-k expansions of alpha, q+alpha, and q*alpha all have the same finite-state dimension and the same finite-state strong dimension. This extends, and gives ... more >>>


TR05-160 | 10th December 2005
Xiaoyang Gu, Jack H. Lutz

Dimension Characterizations of Complexity Classes

We use derandomization to show that sequences of positive $\pspace$-dimension -- in fact, even positive $\Delta^\p_k$-dimension
for suitable $k$ -- have, for many purposes, the full power of random oracles. For example, we show that, if $S$ is any binary sequence whose $\Delta^p_3$-dimension is positive, then $\BPP\subseteq \P^S$ and, moreover, ... more >>>


TR05-157 | 10th December 2005
Xiaoyang Gu, Jack H. Lutz, Elvira Mayordomo

Points on Computable Curves

The ``analyst's traveling salesman theorem'' of geometric
measure theory characterizes those subsets of Euclidean
space that are contained in curves of finite length.
This result, proven for the plane by Jones (1990) and
extended to higher-dimensional Euclidean spaces by
Okikiolu (1991), says that a bounded set $K$ is contained
more >>>


TR05-089 | 30th July 2005
Xiaoyang Gu, Jack H. Lutz, Philippe Moser

Dimensions of Copeland-Erdos Sequences

The base-$k$ {\em Copeland-Erd\"os sequence} given by an infinite
set $A$ of positive integers is the infinite
sequence $\CE_k(A)$ formed by concatenating the base-$k$
representations of the elements of $A$ in numerical
order. This paper concerns the following four
quantities.
\begin{enumerate}[$\bullet$]
\item
The {\em finite-state dimension} $\dimfs (\CE_k(A))$,
a finite-state ... more >>>


TR04-079 | 30th August 2004
John Hitchcock, Jack H. Lutz, Sebastiaan Terwijn

The Arithmetical Complexity of Dimension and Randomness

Constructive dimension and constructive strong dimension are effectivizations of the Hausdorff and packing dimensions, respectively. Each infinite binary sequence A is assigned a dimension dim(A) in [0,1] and a strong dimension Dim(A) in [0,1].

Let DIM^alpha and DIMstr^alpha be the classes of all sequences of dimension alpha and of strong ... more >>>




ISSN 1433-8092 | Imprint