In this paper, we construct new t-server Private Information Retrieval (PIR) schemes with communication complexity subpolynomial in the previously best known, for all but finitely many t. Our results are
based on combining derivatives (in the spirit of Woodruff-Yekhanin) with the Matching Vector
based PIRs of Yekhanin and Efremenko. Previously ...
more >>>
In this work, we show that the class of multivariate degree-$d$ polynomials mapping $\{0,1\}^{n}$ to any Abelian group $G$ is locally correctable with $\widetilde{O}_{d}((\log n)^{d})$ queries for up to a fraction of errors approaching half the minimum distance of the underlying code. In particular, this result holds even for polynomials ... more >>>
We consider the task of locally correcting, and locally list-correcting, multivariate linear functions over the domain $\{0,1\}^n$ over arbitrary fields and more generally Abelian groups. Such functions form error-correcting codes of relative distance $1/2$ and we give local-correction algorithms correcting up to nearly $1/4$-fraction errors making $\widetilde{\mathcal{O}}(\log n)$ queries. This ... more >>>
We prove that the most natural low-degree test for polynomials over finite fields is ``robust'' in the high-error regime for linear-sized fields. Specifically we consider the ``local'' agreement of a function $f\colon \mathbb{F}_q^m \to \mathbb{F}_q$ from the space of degree-$d$ polynomials, i.e., the expected agreement of the function from univariate ... more >>>
We give an $\widetilde{O}(\sqrt{n})$-space single-pass $0.483$-approximation streaming algorithm for estimating the maximum directed cut size (Max-DICUT) in a directed graph on $n$ vertices. This improves over an $O(\log n)$-space $4/9 < 0.45$ approximation algorithm due to Chou, Golovnev, Velusamy (FOCS 2020), which was known to be optimal for $o(\sqrt{n})$-space algorithms.
... more >>>We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random ordering makes a provable difference. Whereas a $4/9 \approx 0.445$ approximation of DICUT requires $\Omega(\sqrt{n})$ space with ... more >>>
In this survey we describe progress over the last decade or so in understanding the complexity of solving constraint satisfaction problems (CSPs) approximately in the streaming and sketching models of computation. After surveying some of the results we give some sketches of the proofs and in particular try to explain ... more >>>
We consider the approximability of constraint satisfaction problems in the streaming setting. For every constraint satisfaction problem (CSP) on $n$ variables taking values in $\{0,\ldots,q-1\}$, we prove that improving over the trivial approximability by a factor of $q$ requires $\Omega(n)$ space even on instances with $O(n)$ constraints. We also identify ... more >>>
An ordering constraint satisfaction problem (OCSP) is given by a positive integer $k$ and a constraint predicate $\Pi$ mapping permutations on $\{1,\ldots,k\}$ to $\{0,1\}$. Given an instance of OCSP$(\Pi)$ on $n$ variables and $m$ constraints, the goal is to find an ordering of the $n$ variables that maximizes the number ... more >>>
A constraint satisfaction problem (CSP), Max-CSP$({\cal F})$, is specified by a finite set of constraints ${\cal F} \subseteq \{[q]^k \to \{0,1\}\}$ for positive integers $q$ and $k$. An instance of the problem on $n$ variables is given by $m$ applications of constraints from ${\cal F}$ to subsequences of the $n$ ... more >>>
In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and their ... more >>>
A Boolean constraint satisfaction problem (CSP), Max-CSP$(f)$, is a maximization problem specified by a constraint $f:\{-1,1\}^k\to\{0,1\}$. An instance of the problem consists of $m$ constraint applications on $n$ Boolean variables, where each constraint application applies the constraint to $k$ literals chosen from the $n$ variables and their negations. The goal ... more >>>
The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate locally-decodable codes. However, the algorithmic results about these ... more >>>
We study the role of interaction in the Common Randomness Generation (CRG) and Secret Key Generation (SKG) problems. In the CRG problem, two players, Alice and Bob, respectively get samples $X_1,X_2,\dots$ and $Y_1,Y_2,\dots$ with the pairs $(X_1,Y_1)$, $(X_2, Y_2)$, $\dots$ being drawn independently from some known probability distribution $\mu$. They ... more >>>
Ar\i kan's exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shannon capacity. Given a (constant-sized) invertible matrix $M$, a family of polar codes can be associated with this matrix and its ability to approach capacity follows from the $\textit{polarization}$ of an associated $[0,1]$-bounded martingale, ... more >>>
The well-known DeMillo-Lipton-Schwartz-Zippel lemma says that $n$-variate
polynomials of total degree at most $d$ over
grids, i.e. sets of the form $A_1 \times A_2 \times \cdots \times A_n$, form
error-correcting codes (of distance at least $2^{-d}$ provided $\min_i\{|A_i|\}\geq 2$).
In this work we explore their local
decodability and local testability. ...
more >>>
In a recent work (Ghazi et al., SODA 2016), the authors with Komargodski and Kothari initiated the study of communication with contextual uncertainty, a setup aiming to understand how efficient communication is possible when the communicating parties imperfectly share a huge context. In this setting, Alice is given a function ... more >>>
In the "correlated sampling" problem, two players, say Alice and Bob, are given two distributions, say $P$ and $Q$ respectively, over the same universe and access to shared randomness. The two players are required to output two elements, without any interaction, sampled according to their respective distributions, while trying to ... more >>>
We present decidability results for a sub-class of "non-interactive" simulation problems, a well-studied class of problems in information theory. A non-interactive simulation problem is specified by two distributions $P(x,y)$ and $Q(u,v)$: The goal is to determine if two players, Alice and Bob, that observe sequences $X^n$ and $Y^n$ respectively where ... more >>>
Motivated by the quest for a broader understanding of communication complexity of simple functions, we introduce the class of ''permutation-invariant'' functions. A partial function $f:\{0,1\}^n \times \{0,1\}^n\to \{0,1,?\}$ is permutation-invariant if for every bijection $\pi:\{1,\ldots,n\} \to \{1,\ldots,n\}$ and every $\mathbf{x}, \mathbf{y} \in \{0,1\}^n$, it is the case that $f(\mathbf{x}, \mathbf{y}) ... more >>>
We introduce a simple model illustrating the role of context in communication and the challenge posed by uncertainty of knowledge of context. We consider a variant of distributional communication complexity where Alice gets some information $x$ and Bob gets $y$, where $(x,y)$ is drawn from a known distribution, and Bob ... more >>>
A local tester for a code probabilistically looks at a given word at a small set of coordinates and based on this local view accepts codewords with probability one while rejecting words far from the code with constant probabilility. A local tester for a code is said to be ``robust'' ... more >>>
The communication complexity of many fundamental problems reduces greatly
when the communicating parties share randomness that is independent of the
inputs to the communication task. Natural communication processes (say between
humans) however often involve large amounts of shared correlations among the
communicating players, but rarely allow for perfect sharing of ...
more >>>
Locally testable codes (LTCs) of constant distance that allow the tester to make a linear number of queries have become the focus of attention recently, due to their elegant connections to hardness of approximation. In particular, the binary Reed-Muller code of block length $N$ and distance $d$ is known to ... more >>>
Local algorithms on graphs are algorithms that run in parallel on the nodes of a graph to compute some global structural feature of the graph. Such algorithms use only local information available at nodes to determine local aspects of the global structure, while also potentially using some randomness. Recent research ... more >>>
In this work we present a strong analysis of the testability of a broad, and to date the most interesting known, class of "affine-invariant'' codes. Affine-invariant codes are codes whose coordinates are associated with a vector space and are invariant under affine transformations of the coordinate space. Affine-invariant linear codes ... more >>>
We consider the task of compression of information when the source of the information and the destination do not agree on the prior, i.e., the distribution from which the information is being generated. This setting was considered previously by Kalai et al. (ICS 2011) who suggested that this was a ... more >>>
In this work we explore error-correcting codes derived from
the ``lifting'' of ``affine-invariant'' codes.
Affine-invariant codes are simply linear codes whose coordinates
are a vector space over a field and which are invariant under
affine-transformations of the coordinate space. Lifting takes codes
defined over a vector space of small dimension ...
more >>>
In this work we explore error-correcting codes derived from
the ``lifting'' of ``affine-invariant'' codes.
Affine-invariant codes are simply linear codes whose coordinates
are a vector space over a field and which are invariant under
affine-transformations of the coordinate space. Lifting takes codes
defined over a vector space of small dimension ...
more >>>
We show that sparse affine-invariant linear properties over arbitrary finite fields are locally testable with a constant number of queries. Given a finite field ${\mathbb{F}}_q$ and an extension field ${\mathbb{F}}_{q^n}$, a property is a set of functions mapping ${\mathbb{F}}_{q^n}$ to ${\mathbb{F}}_q$. The property is said to be affine-invariant if it ... more >>>
We prove that the class of locally testable affine-invariant properties is closed under sums, intersections and "lifts". The sum and intersection are two natural operations on linear spaces of functions, where the sum of two properties is simply their sum as a vector space. The "lift" is a less natural ... more >>>
Over a finite field $\F_q$ the $(n,d,q)$-Reed-Muller code is the code given by evaluations of $n$-variate polynomials of total degree at most $d$ on all points (of $\F_q^n$). The task of testing if a function $f:\F_q^n \to \F_q$ is close to a codeword of an $(n,d,q)$-Reed-Muller code has been of ... more >>>
Affine-invariant properties are an abstract class of properties that generalize some
central algebraic ones, such as linearity and low-degree-ness, that have been
studied extensively in the context of property testing. Affine invariant properties
consider functions mapping a big field $\mathbb{F}_{q^n}$ to the subfield $\mathbb{F}_q$ and include all
properties that form ...
more >>>
We consider the problem of testing if a given function $f : \F_q^n \rightarrow \F_q$ is close to a $n$-variate degree $d$ polynomial over the finite field $\F_q$ of $q$ elements. The natural, low-query, test for this property would be to pick the smallest dimension $t = t_{q,d}\approx d/q$ such ... more >>>
The last two decades have seen enormous progress in the development of sublinear-time algorithms --- i.e., algorithms that examine/reveal properties of ``data'' in less time than it would take to read all of the data. A large, and important, subclass of such properties turn out to be ``linear''. In particular, ... more >>>
The rich collection of successes in property testing raises a natural question: Why are so many different properties turning out to be locally testable? Are there some broad "features" of properties that make them testable? Kaufman and Sudan (STOC 2008) proposed the study of the relationship between the invariances satisfied ... more >>>
A linear code is said to be affine-invariant if the coordinates of the code can be viewed as a vector space and the code is invariant under an affine transformation of the coordinates. A code is said to be locally testable if proximity of a received word
to the code ...
more >>>
Property testing considers the task of testing rapidly (in particular, with very few samples into the data), if some massive data satisfies some given property, or is far from satisfying the property. For ``global properties'', i.e., properties that really depend somewhat on every piece of the data, one could ask ... more >>>
Locally testable codes (LTCs) are error-correcting codes for which membership, in the code, of a given word can be tested by examining it in very few locations. Most known constructions of locally testable codes are linear codes, and give error-correcting codes
whose duals have (superlinearly) {\em many} small weight ...
more >>>
We consider the problem of testing if a given function
$f : \F_2^n \rightarrow \F_2$ is close to any degree $d$ polynomial
in $n$ variables, also known as the Reed-Muller testing problem.
Alon et al.~\cite{AKKLR} proposed and analyzed a natural
$2^{d+1}$-query test for this property and showed that it accepts
more >>>
We put forward a general theory of goal-oriented communication, where communication is not an end in itself, but rather a means to achieving some goals of the communicating parties. The goals can vary from setting to setting, and we provide a general framework for describing any such goal. In this ... more >>>
Motivated by questions in property testing, we search for linear
error-correcting codes that have the ``single local orbit'' property:
i.e., they are specified by a single local
constraint and its translations under the symmetry group of the
code. We show that the dual of every ``sparse'' binary code
whose coordinates
more >>>
We extend the ``method of multiplicities'' to get the following results, of interest in combinatorics and randomness extraction.
\begin{enumerate}
\item We show that every Kakeya set in $\F_q^n$, the $n$-dimensional vector space over the finite field on $q$ elements, must be of size at least $q^n/2^n$. This bound is tight ...
more >>>
We continue the investigation of the task of meaningful communication among intelligent entities (players, agents) without any prior common language. Our generic thesis is that such communication is feasible provided the goals of the communicating players are verifiable and compatible. In a previous work we gave supporting evidence for this ... more >>>
We consider the task of testing properties of Boolean functions that
are invariant under linear transformations of the Boolean cube. Previous
work in property testing, including the linearity test and the test
for Reed-Muller codes, has mostly focused on such tasks for linear
properties. The one exception is a test ...
more >>>
A basic goal in Property Testing is to identify a
minimal set of features that make a property testable.
For the case when the property to be tested is membership
in a binary linear error-correcting code, Alon et al.~\cite{AKKLR}
had conjectured that the presence of a {\em single} low weight
more >>>
Given a pair of finite groups $G$ and $H$, the set of homomorphisms from $G$ to $H$ form an error-correcting code where codewords differ in at least $1/2$ the coordinates. We show that for every pair of {\em abelian} groups $G$ and $H$, the resulting code is (locally) list-decodable from ... more >>>
We argue that the symmetries of a property being tested play a
central role in property testing. We support this assertion in the
context of algebraic functions, by examining properties of functions
mapping a vector space $\K^n$ over a field $\K$ to a subfield $\F$.
We consider $\F$-linear properties that ...
more >>>
Is it possible for two intelligent beings to communicate meaningfully, without any common language or background? This question has interest on its own, but is especially relevant in the context of modern computational infrastructures where an increase in the diversity of computers is making the task of inter-computer interaction increasingly ... more >>>
We show that random sparse binary linear codes are locally testable and locally decodable (under any linear encoding) with constant queries (with probability tending to one). By sparse, we mean that the code should have only polynomially many codewords. Our results are the first to show that local decodability and ... more >>>
Given two binary linear codes R and C, their tensor product R \otimes C consists of all matrices with rows in R and columns in C. We analyze the "robustness" of the following test for this code (suggested by Ben-Sasson and Sudan~\cite{BenSasson-Sudan04}): Pick a random row (or column) and check ... more >>>
Building on Barak's work (Random'02),
Fortnow and Santhanam (FOCS'04) proved a time hierarchy
for probabilistic machines with one bit of advice.
Their argument is based on an implicit translation technique,
which allow to translate separation results for short (say logarithmic)
advice (as shown by Barak) into separations for ...
more >>>
We give constructions of PCPs of length n*polylog(n) (with respect
to circuits of size n) that can be verified by making polylog(n)
queries to bits of the proof. These PCPs are not only shorter than
previous ones, but also simpler. Our (only) building blocks are
Reed-Solomon codes and the bivariate ...
more >>>
We continue the investigation of locally testable codes, i.e.,
error-correcting codes for whom membership of a given word in the
code can be tested probabilistically by examining it in very few
locations. We give two general results on local testability:
First, motivated by the recently proposed notion of robust
probabilistically ...
more >>>
We continue the study of the trade-off between the length of PCPs
and their query complexity, establishing the following main results
(which refer to proofs of satisfiability of circuits of size $n$):
We present PCPs of length $\exp(\tildeO(\log\log n)^2)\cdot n$
that can be verified by making $o(\log\log n)$ Boolean queries.
more >>>
We present upper bounds on the size of codes that are locally
testable by querying only two input symbols. For linear codes, we
show that any $2$-locally testable code with minimal distance
$\delta n$ over a finite field $F$ cannot have more than
$|F|^{3/\delta}$ codewords. This result holds even ...
more >>>
Locally testable codes are error-correcting codes that admit
very efficient codeword tests. Specifically, using a constant
number of (random) queries, non-codewords are rejected with
probability proportional to their distance from the code.
Locally testable codes are believed to be the combinatorial
core of PCPs. However, the relation is ...
more >>>
We introduce the notion of covering complexity of a probabilistic
verifier. The covering complexity of a verifier on a given input is
the minimum number of proofs needed to ``satisfy'' the verifier on
every random string, i.e., on every random string, at least one of the
given proofs must be ...
more >>>
Most known constructions of probabilistically checkable proofs (PCPs)
either blow up the proof size by a large polynomial, or have a high
(though constant) query complexity. In this paper we give a
transformation with slightly-super-cubic blowup in proof size, with a
low query complexity. Specifically, the verifier probes the proof ...
more >>>
We show that the minimum distance of a linear code (or
equivalently, the weight of the lightest codeword) is
not approximable to within any constant factor in random polynomial
time (RP), unless NP equals RP.
Under the stronger assumption that NP is not contained in RQP
(random ...
more >>>
We extend the notion of linearity testing to the task of checking
linear-consistency of multiple functions. Informally, functions
are ``linear'' if their graphs form straight lines on the plane.
Two such functions are ``consistent'' if the lines have the same
slope. We propose a variant of a test of ...
more >>>
Impagliazzo and Wigderson have recently shown that
if there exists a decision problem solvable in time $2^{O(n)}$
and having circuit complexity $2^{\Omega(n)}$
(for all but finitely many $n$) then $\p=\bpp$. This result
is a culmination of a series of works showing
connections between the existence of hard predicates
and ...
more >>>
The Chinese Remainder Theorem states that a positive
integer m is uniquely specified by its remainder modulo
k relatively prime integers p_1,...,p_k, provided
m < \prod_{i=1}^k p_i. Thus the residues of m modulo
relatively prime integers p_1 < p_2 < ... < p_n
form a redundant representation of m if ...
more >>>
This is a revised version of work which has appeared
in preliminary form in the 36th FOCS, 1995.
Given a function $f$ mapping $n$-variate inputs from a finite field
$F$ into $F$,
we consider the task of reconstructing a list of all $n$-variate
degree $d$ polynomials which agree with $f$
more >>>
We present an improved list decoding algorithm for decoding
Reed-Solomon codes. Given an arbitrary string of length n, the
list decoding problem is that of finding all codewords within a
specified Hamming distance from the input string.
It is well-known that this decoding problem for Reed-Solomon
codes reduces to the ...
more >>>
The error probability of Probabilistically Checkable Proof (PCP)
systems can be made exponentially small in the number of queries
by using sequential repetition. In this paper we are interested
in determining the precise rate at which the error goes down in
an optimal protocol, and we make substantial progress toward ...
more >>>
We consider the existence of pairs of probability ensembles which
may be efficiently distinguished given $k$ samples
but cannot be efficiently distinguished given $k'<k$ samples.
It is well known that in any such pair of ensembles it cannot be that
both are efficiently computable
(and that such phenomena ...
more >>>
We show that every language in NP has a probablistic verifier
that checks membership proofs for it using
logarithmic number of random bits and by examining a
<em> constant </em> number of bits in the proof.
If a string is in the language, then there exists a proof ...
more >>>
NP = PCP(log n, 1) and related results crucially depend upon
the close connection between the probability with which a
function passes a ``low degree test'' and the distance of
this function to the nearest degree d polynomial. In this
paper we study a test ...
more >>>
This paper continues the work initiated by Creignou [Cre95] and
Khanna, Sudan and Williamson [KSW96] who classify maximization
problems derived from boolean constraint satisfaction. Here we
study the approximability of {\em minimization} problems derived
thence. A problem in this framework is characterized by a
collection F ...
more >>>
In this paper we study the approximability of boolean constraint
satisfaction problems. A problem in this class consists of some
collection of ``constraints'' (i.e., functions
$f:\{0,1\}^k \rightarrow \{0,1\}$); an instance of a problem is a set
of constraints applied to specified subsets of $n$ boolean
variables. Schaefer earlier ...
more >>>
In 1978, Schaefer considered a subclass of languages in
NP and proved a ``dichotomy theorem'' for this class. The subclass
considered were problems expressible as ``constraint satisfaction
problems'', and the ``dichotomy theorem'' showed that every language in
this class is either in P, or is NP-hard. This result is in ...
more >>>
This paper continues the investigation of the connection between proof
systems and approximation. The emphasis is on proving ``tight''
non-approximability results via consideration of measures like the
``free bit complexity'' and the ``amortized free bit complexity'' of
proof systems.
The first part of the paper presents a collection of new ... more >>>
We attempt to reconcile the two distinct views of approximation
classes: syntactic and computational.
Syntactic classes such as MAX SNP allow for clean complexity-theoretic
results and natural complete problems, while computational classes such
as APX allow us to work with problems whose approximability is
well-understood. Our results give a computational ...
more >>>