Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > PRAHLADH HARSHA:
All reports by Author Prahladh Harsha:

TR24-114 | 12th July 2024
Nir Bitansky, Ron D. Rothblum, Prahladh Harsha, Yuval Ishai, David Wu

Dot-Product Proofs and Their Applications

A dot-product proof (DPP) is a simple probabilistic proof system in which the input statement $x$ and the proof ${\pi}$ are vectors over a finite field $\mathbb{F}$, and the proof is verified by making a single dot-product query $\langle {q},({x} \| {\pi})\rangle$ jointly to ${x}$ and ${\pi}$. A DPP can ... more >>>


TR23-185 | 27th November 2023
Rohan Goyal, Prahladh Harsha, Mrinal Kumar, A. Shankar

Fast list-decoding of univariate multiplicity and folded Reed-Solomon codes

Revisions: 3

We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon (FRS) codes can be made to run in nearly-linear time. This yields, to the best of our knowledge, the first known family of codes that can be decoded (and encoded) in nearly linear time, even as they ... more >>>


TR23-182 | 21st November 2023
Prahladh Harsha, Mrinal Kumar, Ramprasad Saptharishi, Madhu Sudan

An Improved Line-Point Low-Degree Test

We prove that the most natural low-degree test for polynomials over finite fields is ``robust'' in the high-error regime for linear-sized fields. Specifically we consider the ``local'' agreement of a function $f\colon \mathbb{F}_q^m \to \mathbb{F}_q$ from the space of degree-$d$ polynomials, i.e., the expected agreement of the function from univariate ... more >>>


TR23-033 | 24th March 2023
Sumanta Ghosh, Prahladh Harsha, Simao Herdade, Mrinal Kumar, Ramprasad Saptharishi

Fast Numerical Multivariate Multipoint Evaluation

Revisions: 1

We design nearly-linear time numerical algorithms for the problem of multivariate multipoint evaluation over the fields of rational, real and complex numbers. We consider both \emph{exact} and \emph{approximate} versions of the algorithm. The input to the algorithms are (1) coefficients of an $m$-variate polynomial $f$ with degree $d$ in each ... more >>>


TR22-182 | 16th December 2022
Prahladh Harsha, Tulasi mohan Molli, A. Shankar

Criticality of AC0-Formulae

Revisions: 1

Rossman [In Proc. 34th Comput. Complexity Conf., 2019] introduced the notion of criticality. The criticality of a Boolean function $f : \{0, 1\}^n\to \{0, 1\}$ is the minimum $\lambda \geq 1$ such that for all positive integers $t$,
\[Pr_{\rho\sim R_p} [\text{DT}_{\text{depth}}(f|_\rho) \geq t] \leq (p\lambda)^t.\]
.
Håstad’s celebrated switching lemma ... more >>>


TR22-133 | 20th September 2022
Prahladh Harsha, Daniel Mitropolsky, Alon Rosen

Downward Self-Reducibility in TFNP

Revisions: 1 , Comments: 1

A problem is downward self-reducible if it can be solved efficiently given an oracle that returns
solutions for strictly smaller instances. In the decisional landscape, downward self-reducibility is
well studied and it is known that all downward self-reducible problems are in PSPACE. In this
paper, we initiate the study of ... more >>>


TR22-075 | 21st May 2022
Siddharth Bhandari, Prahladh Harsha, Ramprasad Saptharishi, Srikanth Srinivasan

Vanishing Spaces of Random Sets and Applications to Reed-Muller Codes

Revisions: 1

We study the following natural question on random sets of points in $\mathbb{F}_2^m$:

Given a random set of $k$ points $Z=\{z_1, z_2, \dots, z_k\} \subseteq \mathbb{F}_2^m$, what is the dimension of the space of degree at most $r$ multilinear polynomials that vanish on all points in $Z$?

We ... more >>>


TR21-163 | 19th November 2021
Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, A. Shankar

Algorithmizing the Multiplicity Schwartz-Zippel Lemma

Revisions: 1

The multiplicity Schwartz-Zippel lemma asserts that over a field, a low-degree polynomial cannot vanish with high multiplicity very often on a sufficiently large product set. Since its discovery in a work of Dvir, Kopparty, Saraf and Sudan [DKSS13], the lemma has found nu- merous applications in both math and computer ... more >>>


TR21-142 | 1st October 2021
Amey Bhangale, Prahladh Harsha, Sourya Roy

Mixing of 3-term progressions in Quasirandom Groups

In this note, we show the mixing of three-term progressions $(x, xg, xg^2)$ in every finite quasirandom group, fully answering a question of Gowers. More precisely, we show that for any $D$-quasirandom group $G$ and any three sets $A_1, A_2, A_3 \subset G$, we have
\[ \left|\Pr_{x,y\sim G}\left[ x \in ... more >>>


TR21-036 | 14th March 2021
Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, Madhu Sudan

Ideal-theoretic Explanation of Capacity-achieving Decoding

Revisions: 1

In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and their ... more >>>


TR20-179 | 2nd December 2020
Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, Madhu Sudan

Decoding Multivariate Multiplicity Codes on Product Sets

The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate locally-decodable codes. However, the algorithmic results about these ... more >>>


TR20-136 | 11th September 2020
Irit Dinur, Yuval Filmus, Prahladh Harsha, Madhur Tulsiani

Explicit and structured sum of squares lower bounds from high dimensional expanders

We construct an explicit family of 3XOR instances which is hard for Omega(sqrt(log n)) levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in deterministic polynomial time.
Our construction is based on the high-dimensional expanders devised by Lubotzky, ... more >>>


TR20-075 | 6th May 2020
Amey Bhangale, Prahladh Harsha, Orr Paradise, Avishay Tal

Rigid Matrices From Rectangular PCPs

Revisions: 2

We introduce a variant of PCPs, that we refer to as *rectangular* PCPs, wherein proofs are thought of as square matrices, and the random coins used by the verifier can be partitioned into two disjoint sets, one determining the *row* of each query and the other determining the *column*.

We ... more >>>


TR20-072 | 5th May 2020
Yotam Dikstein, Irit Dinur, Prahladh Harsha, Noga Ron-Zewi

Locally testable codes via high-dimensional expanders


Locally testable codes (LTC) are error-correcting codes that have a local tester which can distinguish valid codewords from words that are far from all codewords, by probing a given word only at a very small (sublinear, typically constant) number of locations. Such codes form the combinatorial backbone of PCPs. ... more >>>


TR20-019 | 19th February 2020
Siddharth Bhandari, Prahladh Harsha

A note on the explicit constructions of tree codes over polylogarithmic-sized alphabet

Recently, Cohen, Haeupler and Schulman gave an explicit construction of binary tree codes over polylogarithmic-sized output alphabet based on Pudl\'{a}k's construction of maximum-distance-separable (MDS) tree codes using totally-non-singular triangular matrices. In this short note, we give a unified and simpler presentation of Pudl\'{a}k and Cohen-Haeupler-Schulman's constructions.

more >>>

TR19-093 | 15th July 2019
Prahladh Harsha, Subhash Khot, Euiwoong Lee, Devanathan Thiruvenkatachari

Improved 3LIN Hardness via Linear Label Cover

We prove that for every constant $c$ and $\epsilon = (\log n)^{-c}$, there is no polynomial time algorithm that when given an instance of 3LIN with $n$ variables where an $(1 - \epsilon)$-fraction of the clauses are satisfiable, finds an assignment that satisfies at least $(\frac{1}{2} + \epsilon)$-fraction of clauses ... more >>>


TR18-207 | 5th December 2018
Siddharth Bhandari, Prahladh Harsha, Tulasimohan Molli, Srikanth Srinivasan

On the Probabilistic Degree of OR over the Reals

We study the probabilistic degree over reals of the OR function on $n$ variables. For an error parameter $\epsilon$ in (0,1/3), the $\epsilon$-error probabilistic degree of any Boolean function $f$ over reals is the smallest non-negative integer $d$ such that the following holds: there exists a distribution $D$ of polynomials ... more >>>


TR18-136 | 1st August 2018
Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, Amnon Ta-Shma

List Decoding with Double Samplers

Revisions: 1

We develop the notion of double samplers, first introduced by Dinur and Kaufman [Proc. 58th FOCS, 2017], which are samplers with additional combinatorial properties, and whose existence we prove using high dimensional expanders.

We show how double samplers give a generic way of amplifying distance in a way that enables ... more >>>


TR18-081 | 20th April 2018
Abhishek Bhrushundi, Prahladh Harsha, Pooya Hatami, Swastik Kopparty, Mrinal Kumar

On Multilinear Forms: Bias, Correlation, and Tensor Rank

Revisions: 1

In this paper, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over $GF(2)= \{0,1\}$. We show the following results for multilinear forms and tensors.

1. Correlation bounds : We show that a random $d$-linear ... more >>>


TR18-075 | 23rd April 2018
Irit Dinur, Yotam Dikstein, Yuval Filmus, Prahladh Harsha

Boolean function analysis on high-dimensional expanders

Revisions: 4

We initiate the study of Boolean function analysis on high-dimensional expanders. We describe an analog of the Fourier expansion and of the Fourier levels on simplicial complexes, and generalize the FKN theorem to high-dimensional expanders.

Our results demonstrate that a high-dimensional expanding complex X can sometimes serve as a sparse ... more >>>


TR17-181 | 26th November 2017
Irit Dinur, Yuval Filmus, Prahladh Harsha

Agreement tests on graphs and hypergraphs

Revisions: 1

Agreement tests are a generalization of low degree tests that capture a local-to-global phenomenon, which forms the combinatorial backbone of most PCP constructions. In an agreement test, a function is given by an ensemble of local restrictions. The agreement test checks that the restrictions agree when they overlap, and the ... more >>>


TR17-180 | 26th November 2017
Irit Dinur, Yuval Filmus, Prahladh Harsha

Low degree almost Boolean functions are sparse juntas

Revisions: 3

Nisan and Szegedy showed that low degree Boolean functions are juntas. Kindler and Safra showed that low degree functions which are *almost* Boolean are close to juntas. Their result holds with respect to $\mu_p$ for every *constant* $p$. When $p$ is allowed to be very small, new phenomena emerge. ... more >>>


TR17-013 | 23rd January 2017
Abhishek Bhrushundi, Prahladh Harsha, Srikanth Srinivasan

On polynomial approximations over $\mathbb{Z}/2^k\mathbb{Z}$

We study approximation of Boolean functions by low-degree polynomials over the ring $\mathbb{Z}/2^k\mathbb{Z}$. More precisely, given a Boolean function F$:\{0,1\}^n \rightarrow \{0,1\}$, define its $k$-lift to be F$_k:\{0,1\}^n \rightarrow \{0,2^{k-1}\}$ by $F_k(x) = 2^{k-F(x)}$ (mod $2^k$). We consider the fractional agreement (which we refer to as $\gamma_{d,k}(F)$) of $F_k$ with ... more >>>


TR16-204 | 20th December 2016
Prahladh Harsha, Srikanth Srinivasan

Robust Multiplication-based Tests for Reed-Muller Codes

We consider the following multiplication-based tests to check if a given function $f: \mathbb{F}_q^n\to \mathbb{F}_q$ is the evaluation of a degree-$d$ polynomial over $\mathbb{F}_q$ for $q$ prime.

* $\mathrm{Test}_{e,k}$: Pick $P_1,\ldots,P_k$ independent random degree-$e$ polynomials and accept iff the function $fP_1\cdots P_k$ is the evaluation of a degree-$(d+ek)$ polynomial.

... more >>>

TR16-160 | 26th October 2016
Irit Dinur, Prahladh Harsha, Rakesh Venkat, Henry Yuen

Multiplayer parallel repetition for expander games

Revisions: 1

We investigate the value of parallel repetition of one-round games with any number of players $k\ge 2$. It has been an open question whether an analogue of Raz's Parallel Repetition Theorem holds for games with more than two players, i.e., whether the value of the repeated game decays exponentially ... more >>>


TR16-068 | 28th April 2016
Prahladh Harsha, Srikanth Srinivasan

On Polynomial Approximations to $\mathrm{AC}^0$

Revisions: 1

We make progress on some questions related to polynomial approximations of $\mathrm{AC}^0$. It is known, by works of Tarui (Theoret. Comput. Sci. 1993) and Beigel, Reingold, and Spielman (Proc. $6$th CCC 1991), that any $\mathrm{AC}^0$ circuit of size $s$ and depth $d$ has an $\varepsilon$-error probabilistic polynomial over the reals ... more >>>


TR15-199 | 7th December 2015
Prahladh Harsha, Rahul Jain, Jaikumar Radhakrishnan

Relaxed partition bound is quadratically tight for product distributions

Let $f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ be a 2-party function. For every product distribution $\mu$ on $\{0,1\}^n \times \{0,1\}^n$, we show that $${{CC}}^\mu_{0.49}(f) = O\left(\left(\log {{rprt}}_{1/4}(f) \cdot \log \log {{rprt}}_{1/4}(f)\right)^2\right),$$ where ${{CC}^\mu_\varepsilon(f)$ is the distributional communication complexity with error at most $\varepsilon$ under the distribution $\mu$ and ... more >>>


TR15-085 | 23rd May 2015
Irit Dinur, Prahladh Harsha, Guy Kindler

Polynomially Low Error PCPs with polyloglogn Queries via Modular Composition

We show that every language in NP has a PCP verifier that tosses $O(\log n)$ random coins, has perfect completeness, and a soundness error of at most $1/poly(n)$, while making at most $O(poly\log\log n)$ queries into a proof over an alphabet of size at most $n^{1/poly\log\log n}$. Previous constructions that ... more >>>


TR13-167 | 28th November 2013
Venkatesan Guruswami, Prahladh Harsha, Johan Håstad, Srikanth Srinivasan, Girish Varma

Super-polylogarithmic hypergraph coloring hardness via low-degree long codes

We prove improved inapproximability results for hypergraph coloring using the low-degree polynomial code (aka, the “short code” of Barak et. al. [FOCS 2012]) and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate this code for inapproximability results.

In particular, we prove quasi-NP-hardness of the following problems on ... more >>>


TR09-144 | 24th December 2009
Prahladh Harsha, Adam Klivans, Raghu Meka

An Invariance Principle for Polytopes

Let $X$ be randomly chosen from $\{-1,1\}^n$, and let $Y$ be randomly
chosen from the standard spherical Gaussian on $\R^n$. For any (possibly unbounded) polytope $P$
formed by the intersection of $k$ halfspaces, we prove that
$$\left|\Pr\left[X \in P\right] - \Pr\left[Y \in P\right]\right| \leq \log^{8/5}k ... more >>>


TR09-042 | 5th May 2009
Irit Dinur, Prahladh Harsha

Composition of low-error 2-query PCPs using decodable PCPs

The main result of this paper is a simple, yet generic, composition theorem for low error two-query probabilistically checkable proofs (PCPs). Prior to this work, composition of PCPs was well-understood only in the constant error regime. Existing composition methods in the low error regime were non-modular (i.e., very much tailored ... more >>>


TR07-127 | 22nd November 2007
Arie Matsliah, Eli Ben-Sasson, Prahladh Harsha, Oded Lachish

Sound 3-query PCPPs are Long

We initiate the study of the tradeoff between the {\em length} of a
probabilistically checkable proof of proximity (PCPP) and the
maximal {\em soundness} that can be guaranteed by a $3$-query
verifier with oracle access to the proof. Our main observation is
that a verifier limited to querying a short ... more >>>


TR06-151 | 10th December 2006
Prahladh Harsha, Rahul Jain, David McAllester, Jaikumar Radhakrishnan

The communication complexity of correlation

We examine the communication required for generating random variables
remotely. One party Alice will be given a distribution D, and she
has to send a message to Bob, who is then required to generate a
value with distribution exactly D. Alice and Bob are allowed
to share random bits generated ... more >>>


TR04-021 | 23rd March 2004
Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, Salil Vadhan

Robust PCPs of Proximity, Shorter PCPs and Applications to Coding

We continue the study of the trade-off between the length of PCPs
and their query complexity, establishing the following main results
(which refer to proofs of satisfiability of circuits of size $n$):
We present PCPs of length $\exp(\tildeO(\log\log n)^2)\cdot n$
that can be verified by making $o(\log\log n)$ Boolean queries.
more >>>


TR03-006 | 23rd January 2003
Eli Ben-Sasson, Prahladh Harsha, Sofya Raskhodnikova

3CNF Properties are Hard to Test

For a boolean formula \phi on n variables, the associated property
P_\phi is the collection of n-bit strings that satisfy \phi. We prove
that there are 3CNF properties that require a linear number of queries,
even for adaptive tests. This contrasts with 2CNF properties
that are testable with O(\sqrt{n}) ... more >>>


TR03-004 | 24th December 2002
Eli Ben-Sasson, Prahladh Harsha

Lower Bounds for Bounded-Depth Frege Proofs via Buss-Pudlack Games

We present a simple proof of the bounded-depth Frege lower bounds of
Pitassi et. al. and Krajicek et. al. for the pigeonhole
principle. Our method uses the interpretation of proofs as two player
games given by Pudlak and Buss. Our lower bound is conceptually
simpler than previous ones, and relies ... more >>>


TR00-061 | 14th August 2000
Prahladh Harsha, Madhu Sudan

Small PCPs with low query complexity

Most known constructions of probabilistically checkable proofs (PCPs)
either blow up the proof size by a large polynomial, or have a high
(though constant) query complexity. In this paper we give a
transformation with slightly-super-cubic blowup in proof size, with a
low query complexity. Specifically, the verifier probes the proof ... more >>>




ISSN 1433-8092 | Imprint