We study an approximate version of $q$-query LDCs (Locally Decodable Codes) over the real numbers and prove lower bounds on the encoding length of such codes. A $q$-query $(\alpha,\delta)$-approximate LDC is a set $V$ of $n$ points in $\mathbb{R}^d$ so that, for each $i \in [d]$ there are $\Omega(\delta n)$ ... more >>>
We study the problem of monotonicity testing over the hypercube. As
previously observed in several works, a positive answer to a natural question about routing
properties of the hypercube network would imply the existence of efficient
monotonicity testers. In particular, if any $\ell$ disjoint source-sink pairs
on the directed hypercube ...
more >>>