An $(n,r,h,a,q)$-Local Reconstruction Code is a linear code over $\mathbb{F}_q$ of length $n$, whose codeword symbols are partitioned into $n/r$ local groups each of size $r$. Each local group satisfies `$a$' local parity checks to recover from `$a$' erasures in that local group and there are further $h$ global parity ... more >>>
We study the complexity of Boolean constraint satisfaction problems (CSPs) when the assignment must have Hamming weight in some congruence class modulo $M$, for various choices of the modulus $M$. Due to the known classification of tractable Boolean CSPs, this mainly reduces to the study of three cases: 2SAT, HornSAT, ... more >>>
In recent years the explosion in the volumes of data being stored online has resulted in distributed storage systems transitioning to erasure coding based schemes. Local Reconstruction Codes (LRCs) have emerged as the codes of choice for these applications. An $(n,r,h,a,q)$-LRC is a $q$-ary code, where encoding is as a ... more >>>
A locally correctable code (LCC) is an error correcting code that allows correction of any arbitrary coordinate of a corrupted codeword by querying only a few coordinates.
We show that any zero-error $2$-query locally correctable code $\mathcal{C}: \{0,1\}^k \to \Sigma^n$ that can correct a constant fraction of corrupted symbols must ...
more >>>
One of the most important open problems in the theory
of error-correcting codes is to determine the
tradeoff between the rate $R$ and minimum distance $\delta$ of a binary
code. The best known tradeoff is the Gilbert-Varshamov bound,
and says that for every $\delta \in (0, 1/2)$, there are ...
more >>>
Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is ... more >>>
A 2-server Private Information Retrieval (PIR) scheme allows a user to retrieve the $i$th bit of an $n$-bit database replicated among two servers (which do not communicate) while not revealing any information about $i$ to either server. In this work we construct a 1-round 2-server PIR with total communication cost ... more >>>