Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > DIVESH AGGARWAL:
All reports by Author Divesh Aggarwal:

TR15-179 | 10th November 2015
Divesh Aggarwal, Kaave Hosseini, Shachar Lovett

Affine-malleable Extractors, Spectrum Doubling, and Application to Privacy Amplification

The study of seeded randomness extractors is a major line of research in theoretical computer science. The goal is to construct deterministic algorithms which can take a ``weak" random source $X$ with min-entropy $k$ and a uniformly random seed $Y$ of length $d$, and outputs a string of length close ... more >>>


TR14-129 | 10th October 2014
Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana , Maciej Obremski

Leakage-resilient non-malleable codes

Revisions: 1

A recent trend in cryptography is to construct cryptosystems that are secure against physical attacks. Such attacks are usually divided into two classes: the \emph{leakage} attacks in which the adversary obtains some information about the internal state of the machine, and the \emph{tampering} attacks where the adversary can modify this ... more >>>


TR14-128 | 10th October 2014
Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana , Maciej Obremski

Non-malleable Reductions and Applications

Revisions: 3

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs~\cite{DPW10}, provide a useful message integrity guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either ... more >>>


TR13-081 | 6th June 2013
Divesh Aggarwal, Yevgeniy Dodis, Shachar Lovett

Non-malleable Codes from Additive Combinatorics

Non-malleable codes provide a useful and meaningful security guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a ... more >>>


TR13-076 | 15th May 2013
Divesh Aggarwal, Chandan Dubey

Improved hardness results for unique shortest vector problem

Revisions: 1

We give several improvements on the known hardness of the unique shortest vector problem in lattices, i.e., the problem of finding a shortest vector in a given lattice given a promise that the shortest vector is unique upto a uniqueness factor $\gamma$.
We give a deterministic reduction from the ... more >>>




ISSN 1433-8092 | Imprint