Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style

All reports by Author T.C. Vijayaraghavan:

TR10-099 | 20th June 2010
T.C. Vijayaraghavan

A Note on Closure Properties of ModL

Recently in [Vij09, Corollary 3.7] the complexity class ModL has been shown to be closed under complement assuming NL = UL. In this note we continue to show many other closure properties of ModL which include the following.

1. ModL is closed under $\leq ^L_m$ reduction, $\vee$(join) and $\leq ^{UL}_m$ ... more >>>

TR09-082 | 20th September 2009
T.C. Vijayaraghavan

Characterization of ModL using Prime Modulus.

Revisions: 1

The complexity class ModL was defined by Arvind and Vijayaraghavan in [AV04] (more precisely in Definition 1.4.1, Vij08],[Definition 3.1, AV]). In this paper, under the assumption that NL =UL, we show that for every language $L\in ModL$ there exists a function $f\in \sharpL$ and a function $g\in FL$ such that ... more >>>

TR09-009 | 18th December 2008
T.C. Vijayaraghavan

Checking Equality of Matroid Linear Representations and the Cycle Matching Problem

Revisions: 2

Given linear representations M_1 and M_2 of matroids over a field F, we consider the problem (denoted by ECLR), of checking if M_1 and M_2 represent the same matroid. We show that when F=Z_2, ECLR{Z_2} is complete for $\parityL$. Let M_1,M_2\in Q ^{m\times n} be two matroid linear representations given ... more >>>

TR08-052 | 29th April 2008
Vikraman Arvind, T.C. Vijayaraghavan

The Orbit problem is in the GapL Hierarchy

Revisions: 1

The \emph{Orbit problem} is defined as follows: Given a matrix $A\in
\Q ^{n\times n}$ and vectors $\x,\y\in \Q ^n$, does there exist a
non-negative integer $i$ such that $A^i\x=\y$. This problem was
shown to be in deterministic polynomial time by Kannan and Lipton in
\cite{KL1986}. In this paper we place ... more >>>

TR04-121 | 7th December 2004
Vikraman Arvind, Piyush Kurur, T.C. Vijayaraghavan

Bounded Color Multiplicity Graph Isomorphism is in the #L Hierarchy.

In this paper we study the complexity of Bounded Color
Multiplicity Graph Isomorphism (BCGI): the input is a pair of
vertex-colored graphs such that the number of vertices of a given
color in an input graph is bounded by $b$. We show that BCGI is in the
#L hierarchy ... more >>>

ISSN 1433-8092 | Imprint