Ordered binary decision diagrams (OBDDs) are a popular data structure for Boolean functions.
Some applications work with a restricted variant called complete OBDDs
which is strongly related to nonuniform deterministic finite automata.
One of its complexity measures is the width which has been investigated
in several areas in computer science ...
more >>>
Integer multiplication as one of the basic arithmetic functions has been
in the focus of several complexity theoretical investigations.
Ordered binary decision diagrams (OBDDs) are one of the most common
dynamic data structures for boolean functions.
Among the many areas of application are verification, model checking,
computer-aided design, relational algebra, ...
more >>>
Branching programs are computation models
measuring the space of (Turing machine) computations.
Read-once branching programs (BP1s) are the
most general model where each graph-theoretical path is the computation
path for some input. Exponential lower bounds on the size of read-once
branching programs are known since a long time. Nevertheless, there ...
more >>>
Ordered binary decision diagrams (OBDDs) are nowadays the most common
dynamic data structure or representation type for Boolean functions.
Among the many areas of application are verification, model checking,
computer aided design, relational algebra, and symbolic graph algorithms.
Although many even exponential lower bounds on the OBDD size of Boolean ...
more >>>
Branching programs are a well-established computation
model for boolean functions, especially read-once
branching programs (BP1s) have been studied intensively.
A very simple function $f$ in $n^2$ variables is
exhibited such that both the function $f$ and its negation
$\neg f$ can be computed by $\Sigma^3_p$-circuits,
the ...
more >>>
Branching programs are a well-established computation model
for Boolean functions, especially read-once branching programs
have been studied intensively. Exponential lower bounds for
deterministic and nondeterministic read-once branching programs
are known for a long time. On the other hand, the problem of
proving superpolynomial lower bounds ...
more >>>
Many BDD (binary decision diagram) models are motivated
by CAD applications and have led to complexity theoretical
problems and results. Motivated by applications in genetic
programming Krause, Savick\'y, and Wegener (1999) have shown
that for the inner product function IP$_n$ and the direct
storage access function DSA$_n$ ...
more >>>
Branching programs are a well established computation model for
Boolean functions, especially read-once branching programs have
been studied intensively.
In this paper the expressive power of nondeterministic read-once
branching programs, i.e., the class of functions
representable in polynomial size, is investigated.
For that reason two restricted models of nondeterministic read-once
more >>>
Ordered binary decision diagrams (OBDDs) are nowadays the
most common dynamic data structure or representation type
for Boolean functions. Among the many areas of application
are verification, model checking, and computer aided design.
For many functions it is easy to estimate the OBDD ...
more >>>
Computational complexity is concerned with the complexity of solving
problems and computing functions and not with the complexity of verifying
circuit designs.
The importance of formal circuit verification is evident.
Therefore, a framework of a complexity theory for formal circuit
verification with binary decision diagrams ...
more >>>
Almost the same types of restricted branching programs (or
binary decision diagrams BDDs) are considered in complexity
theory and in applications like hardware verification. These
models are read-once branching programs (free BDDs) and certain
types of oblivious branching programs (ordered and indexed BDDs
with k layers). The complexity of ...
more >>>