We give a nearly-optimal algorithm for testing uniformity of distributions supported on $\{-1,1\}^n$, which makes $\tilde O (\sqrt{n}/\varepsilon^2)$ queries to a subcube conditional sampling oracle (Bhattacharyya and Chakraborty (2018)). The key technical component is a natural notion of random restriction for distributions on $\{-1,1\}^n$, and a quantitative analysis of how ... more >>>
We investigate distribution testing with access to non-adaptive conditional samples.
In the conditional sampling model, the algorithm is given the following access to a distribution: it submits a query set $S$ to an oracle, which returns a sample from the distribution conditioned on being from $S$.
In the non-adaptive setting, ...
more >>>
Given samples from an unknown distribution $p$ and a description of a distribution $q$, are $p$ and $q$ close or far? This question of "identity testing" has received significant attention in the case of testing whether $p$ and $q$ are equal or far in total variation distance. However, in recent ... more >>>
Given samples from an unknown multivariate distribution $p$, is it possible to distinguish whether $p$ is the product of its marginals versus $p$ being far from every product distribution? Similarly, is it possible to distinguish whether $p$ equals a given distribution $q$ versus $p$ and $q$ being far from each ... more >>>
A recent model for property testing of probability distributions enables tremendous savings in the sample complexity of testing algorithms, by allowing them to condition the sampling on subsets of the domain.
In particular, Canonne et al. showed that, in this setting, testing identity of an unknown distribution $D$ (i.e., ...
more >>>