Abstract. The old intuitive question "what does the machine think" at
different stages of its computation is examined. Our paper is based on
the formal de nitions and results which are collected in the branching
program theory around the intuitive question "what does the program
know about the contents of ...
more >>>
The relationship between deterministic and probabilistic computations is one of the central issues in complexity theory. This problem can be tackled by constructing polynomial time hitting set generators which, however, belongs to the hardest problems in computer science even for severely restricted computational models. In our work, we consider read-once ... more >>>
We propose an information-theoretic approach to proving lower
bounds on the size of branching programs. The argument is based on
Kraft-McMillan type inequalities for the average amount of
uncertainty about (or entropy of) a given input during the various
stages of computation. The uncertainty is measured by the average
more >>>
We propose an information-theoretic approach to proving
lower bounds on the size of branching programs (b.p.). The argument
is based on Kraft-McMillan type inequalities for the average amount of
uncertainty about (or entropy of) a given input during various
stages of the computation. ...
more >>>
Branching programs (b.p.s) or binary decision diagrams are a
general graph-based model of sequential computation. The b.p.s of
polynomial size are a nonuniform counterpart of LOG. Lower bounds
for different kinds of restricted b.p.s are intensively
investigated. The restrictions based on the number of tests of
more >>>
Branching programs (b.p.'s) or decision diagrams are a general
graph-based model of sequential computation. The b.p.'s of
polynomial size are a nonuniform counterpart of LOG. Lower bounds
for different kinds of restricted b.p.'s are intensively
investigated. An important restriction are so called $k$-b.p.'s,
where each computation reads each input ...
more >>>
Branching programs (b.p.'s) or decision diagrams are a general
graph-based model of sequential computation. B.p.'s of polynomial
size are a nonuniform counterpart of LOG. Lower bounds for
different kinds of restricted b.p.'s are intensively investigated.
An important restriction are so called 1-b.p.'s, where each
computation reads each input bit at ...
more >>>