Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > SUMANTA GHOSH:
All reports by Author Sumanta Ghosh:

TR21-062 | 29th April 2021
Vishwas Bhargava, Sumanta Ghosh

Improved Hitting Set for Orbit of ROABPs

The orbit of an $n$-variate polynomial $f(\mathbf{x})$ over a field $\mathbb{F}$ is the set $\{f(A \mathbf{x} + b)\,\mid\, A\in \mathrm{GL}({n,\mathbb{F}})\mbox{ and }\mathbf{b} \in \mathbb{F}^n\}$, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this paper, we give improved constructions of ... more >>>


TR18-036 | 21st February 2018
Michael Forbes, Sumanta Ghosh, Nitin Saxena

Towards blackbox identity testing of log-variate circuits

Derandomization of blackbox identity testing reduces to extremely special circuit models. After a line of work, it is known that focusing on circuits with constant-depth and constantly many variables is enough (Agrawal,Ghosh,Saxena, STOC'18) to get to general hitting-sets and circuit lower bounds. This inspires us to study circuits with few ... more >>>


TR18-035 | 21st February 2018
Manindra Agrawal, Sumanta Ghosh, Nitin Saxena

Bootstrapping variables in algebraic circuits

We show that for the blackbox polynomial identity testing (PIT) problem it suffices to study circuits that depend only on the first extremely few variables. One only need to consider size-$s$ degree-$s$ circuits that depend on the first $\log^{\circ c} s$ variables (where $c$ is a constant and we are ... more >>>


TR17-035 | 23rd February 2017
Manindra Agrawal, Michael Forbes, Sumanta Ghosh, Nitin Saxena

Small hitting-sets for tiny arithmetic circuits or: How to turn bad designs into good

Research in the last decade has shown that to prove lower bounds or to derandomize polynomial identity testing (PIT) for general arithmetic circuits it suffices to solve these questions for restricted circuits. In this work, we study the smallest possibly restricted class of circuits, in particular depth-$4$ circuits, which would ... more >>>




ISSN 1433-8092 | Imprint