Let $f:\{0,1\}^n \rightarrow \{0,1\}$ be a Boolean function. The certificate complexity $C(f)$ is a complexity measure that is quadratically tight for the zero-error randomized query complexity $R_0(f)$: $C(f) \leq R_0(f) \leq C(f)^2$. In this paper we study a new complexity measure that we call expectational certificate complexity $EC(f)$, which is ... more >>>
Let the randomized query complexity of a relation for error probability $\epsilon$ be denoted by $\R_\epsilon(\cdot)$. We prove that for any relation $f \subseteq \{0,1\}^n \times \mathcal{R}$ and Boolean function $g:\{0,1\}^m \rightarrow \{0,1\}$, $\R_{1/3}(f\circ g^n) = \Omega(\R_{4/9}(f)\cdot\R_{1/2-1/n^4}(g))$, where $f \circ g^n$ is the relation obtained by composing $f$ and $g$. ... more >>>
While exponential separations are known between quantum and randomized communication complexity for partial functions, e.g. Raz [1999], the best known separation between these measures for a total function is quadratic, witnessed by the disjointness function. We give the first super-quadratic separation between quantum and randomized
communication complexity for a ...
more >>>
In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized
query complexity for a total boolean function is given by the function $f$ on $n=2^k$ bits defined by a complete binary tree
of NAND gates of depth $k$, which achieves $R_0(f) = O(D(f)^{0.7537\ldots})$. ...
more >>>
Common information was introduced by Wyner as a measure of dependence of two
random variables. This measure has been recently resurrected as a lower bound on the logarithm of the nonnegative rank of a nonnegative matrix. Lower bounds on nonnegative rank have important applications to several areas such
as communication ...
more >>>
We show that disjointness requires randomized communication
Omega(\frac{n^{1/2k}}{(k-1)2^{k-1}2^{2^{k-1}}})
in the general k-party number-on-the-forehead model of complexity.
The previous best lower bound was Omega(\frac{log n}{k-1}). By
results of Beame, Pitassi, and Segerlind, this implies
2^{n^{Omega(1)}} lower bounds on the size of tree-like Lovasz-Schrijver
proof systems needed to refute certain unsatisfiable ...
more >>>
We introduce the study of Kolmogorov complexity with error. For a
metric d, we define C_a(x) to be the length of a shortest
program p which prints a string y such that d(x,y) \le a. We
also study a conditional version of this measure C_{a,b}(x|y)
where the task is, given ...
more >>>
The information contained in a string $x$ about a string $y$
is defined as the difference between the Kolmogorov complexity
of $y$ and the conditional Kolmogorov complexity of $y$ given $x$,
i.e., $I(x:y)=\C(y)-\C(y|x)$. From the well-known Kolmogorov--Levin Theorem it follows that $I(x:y)$ is symmetric up to a small ...
more >>>
The language compression problem asks for succinct descriptions of
the strings in a language A such that the strings can be efficiently
recovered from their description when given a membership oracle for
A. We study randomized and nondeterministic decompression schemes
and investigate how close we can get to the information ...
more >>>