Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > AUTHORS > SHALEV BEN-DAVID:
All reports by Author Shalev Ben-David:

TR20-066 | 28th April 2020
Scott Aaronson, Shalev Ben-David, Robin Kothari, Avishay Tal

Quantum Implications of Huang's Sensitivity Theorem

Based on the recent breakthrough of Huang (2019), we show that for any total Boolean function $f$, the deterministic query complexity, $D(f)$, is at most quartic in the quantum query complexity, $Q(f)$: $D(f) = O(Q(f)^4)$. This matches the known separation (up to log factors) due to Ambainis, Balodis, Belovs, Lee, ... more >>>


TR16-087 | 30th May 2016
Shalev Ben-David, Robin Kothari

Randomized query complexity of sabotaged and composed functions

We study the composition question for bounded-error randomized query complexity: Is R(f o g) = Omega(R(f) R(g)) for all Boolean functions f and g? We show that inserting a simple Boolean function h, whose query complexity is only Theta(log R(g)), in between f and g allows us to prove R(f ... more >>>


TR16-084 | 23rd May 2016
Shalev Ben-David

Low-Sensitivity Functions from Unambiguous Certificates

We provide new query complexity separations against sensitivity for total Boolean functions: a power 3 separation between deterministic (and even randomized or quantum) query complexity and sensitivity, and a power 2.1 separation between certificate complexity and sensitivity. We get these separations by using a new connection between sensitivity and a ... more >>>


TR16-072 | 4th May 2016
Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika G\"o{\"o}s, Rahul Jain, Robin Kothari, Troy Lee, Miklos Santha

Separations in communication complexity using cheat sheets and information complexity

While exponential separations are known between quantum and randomized communication complexity for partial functions, e.g. Raz [1999], the best known separation between these measures for a total function is quadratic, witnessed by the disjointness function. We give the first super-quadratic separation between quantum and randomized
communication complexity for a ... more >>>


TR15-203 | 13th December 2015
Scott Aaronson, Shalev Ben-David

Sculpting Quantum Speedups

Given a problem which is intractable for both quantum and classical algorithms, can we find a sub-problem for which quantum algorithms provide an exponential advantage? We refer to this problem as the "sculpting problem." In this work, we give a full characterization of sculptable functions in the query complexity setting. ... more >>>


TR15-175 | 5th November 2015
Scott Aaronson, Shalev Ben-David, Robin Kothari

Separations in query complexity using cheat sheets

We show a power 2.5 separation between bounded-error randomized and quantum query complexity for a total Boolean function, refuting the widely believed conjecture that the best such separation could only be quadratic (from Grover's algorithm). We also present a total function with a power 4 separation between quantum query complexity ... more >>>


TR15-108 | 30th June 2015
Shalev Ben-David

A Super-Grover Separation Between Randomized and Quantum Query Complexities

We construct a total Boolean function $f$ satisfying
$R(f)=\tilde{\Omega}(Q(f)^{5/2})$, refuting the long-standing
conjecture that $R(f)=O(Q(f)^2)$ for all total Boolean functions.
Assuming a conjecture of Aaronson and Ambainis about optimal quantum speedups for partial functions,
we improve this to $R(f)=\tilde{\Omega}(Q(f)^3)$.
Our construction is motivated by the Göös-Pitassi-Watson function
but does not ... more >>>




ISSN 1433-8092 | Imprint