We study parity decision trees for Boolean functions. The motivation of our study is the log-rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree complexity. Our contributions are as follows. Let $f : \mathbb{F}_2^n \to \{-1, 1\}$ be a Boolean function with Fourier support ... more >>>
Buhrman, Cleve and Wigderson (STOC'98) observed that for every Boolean function $f : \{-1, 1\}^n \to \{-1, 1\}$ and $\bullet : \{-1, 1\}^2 \to \{-1, 1\}$ the two-party bounded-error quantum communication complexity of $(f \circ \bullet)$ is $O(Q(f) \log n)$, where $Q(f)$ is the bounded-error quantum query complexity of $f$. ... more >>>
The $\epsilon$-approximate degree $\widetilde{\text{deg}}_\epsilon(f)$ of a Boolean function $f$ is the least degree of a real-valued polynomial that approximates $f$ pointwise to error $\epsilon$. The approximate degree of $f$ is at least $k$ iff there exists a pair of probability distributions, also known as a dual polynomial, that are perfectly ... more >>>
The communication class $UPP^{cc}$ is a communication analog of the Turing Machine complexity class $PP$. It is characterized by a matrix-analytic complexity measure called sign-rank (also called dimension complexity), and is essentially the most powerful communication class against which we know how to prove lower bounds.
For a communication problem ... more >>>
We demonstrate a lower bound technique for linear decision lists, which are decision lists where the queries are arbitrary linear threshold functions.
We use this technique to prove an explicit lower bound by showing that any linear decision list computing the function $MAJ \circ XOR$ requires size $2^{0.18 n}$. This ...
more >>>
We construct a simple and total XOR function $F$ on $2n$ variables that has only $O(\sqrt{n})$ spectral norm, $O(n^2)$ approximate rank and $n^{O(\log n)}$ approximate nonnegative rank. We show it has polynomially large randomized bounded-error communication complexity of $\Omega(\sqrt{n})$. This yields the first exponential gap between the logarithm of the ... more >>>
Proving super-polynomial lower bounds against depth-2 threshold circuits of the form THR of THR is a well-known open problem that represents a frontier of our understanding in boolean circuit complexity. By contrast, exponential lower bounds on the size of THR of MAJ circuits were shown by Razborov and Sherstov (SIAM ... more >>>
We show a new duality between the polynomial margin complexity of $f$ and the discrepancy of the function $f \circ$ XOR, called an XOR function. Using this duality,
we develop polynomial based techniques for understanding the bounded error (BPP) and the weakly-unbounded error (PP) communication complexities of XOR functions. ...
more >>>
We show that a simple function has small unbounded error communication complexity in the $k$-party number-on-forehead (NOF) model but every probabilistic protocol that solves it with sub-exponential advantage over random guessing has cost essentially $\Omega\left(\frac{\sqrt{n}}{4^k}\right)$ bits. Such a separation was first shown for $k=2$ independently by Buhrman et al. ['07] ... more >>>