The field of combinatorial reconfiguration studies search problems with a focus on transforming one feasible solution into another.
Recently, Ohsaka [STACS'23] put forth the Reconfiguration Inapproximability Hypothesis (RIH), which roughly asserts that there is some $\varepsilon>0$ such that given as input a $k$-CSP instance (for some constant $k$) over ... more >>>
Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions.
more >>>The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb{F}_2$, which can be stated as follows: given a generator matrix A and an integer k, determine whether the code generated by A has distance at most k, or in other words, whether ... more >>>
Given a set of $n$ points in $\mathbb R^d$, the (monochromatic) Closest Pair problem asks to find a pair of distinct points in the set that are closest in the $\ell_p$-metric. Closest Pair is a fundamental problem in Computational Geometry and understanding its fine-grained complexity in the Euclidean metric when ... more >>>
We study the 2-ary constraint satisfaction problems (2-CSPs), which can be stated as follows: given a constraint graph $G = (V, E)$, an alphabet set $\Sigma$ and, for each edge $\{u, v\} \in E$, a constraint $C_{uv} \subseteq \Sigma \times \Sigma$, the goal is to find an assignment $\sigma: V ... more >>>
The $k$-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb F_2$, which can be stated as follows: given a generator matrix $\mathbf A$ and an integer $k$, determine whether the code generated by $\mathbf A$ has distance at most $k$. Here, $k$ ... more >>>
We study the parameterized complexity of approximating the $k$-Dominating Set (domset) problem where an integer $k$ and a graph $G$ on $n$ vertices are given as input, and the goal is to find a dominating set of size at most $F(k) \cdot k$ whenever the graph $G$ has a dominating ... more >>>
In the Densest $k$-Subgraph problem, given an undirected graph $G$ and an integer $k$, the goal is to find a subgraph of $G$ on $k$ vertices that contains maximum number of edges. Even though the state-of-the-art algorithm for the problem achieves only $O(n^{1/4 + \varepsilon})$ approximation ratio (Bhaskara et al., ... more >>>