\begin{abstract}
Given a monomial ideal $I=\angle{m_1,m_2,\cdots,m_k}$ where $m_i$
are monomials and a polynomial $f$ as an arithmetic circuit the
\emph{Ideal Membership Problem } is to test if $f\in I$. We study
this problem and show the following results.
\begin{itemize}
\item[(a)] If the ideal $I=\angle{m_1,m_2,\cdots,m_k}$ for a
more >>>