Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > PRIVATE INFORMATION RETRIEVAL:
Reports tagged with private information retrieval:
TR01-015 | 9th February 2001
Amos Beimel, Yuval Ishai

Information-Theoretic Private Information Retrieval: A Unified Construction

A Private Information Retrieval (PIR) protocol enables a user to
retrieve a data item from a database while hiding the identity of the
item being retrieved. In a $t$-private, $k$-server PIR protocol the
database is replicated among $k$ servers, and the user's privacy is
protected from any collusion of up ... more >>>


TR02-059 | 9th August 2002
Iordanis Kerenidis, Ronald de Wolf

Exponential Lower Bound for 2-Query Locally Decodable Codes

We prove exponential lower bounds on the length of 2-query
locally decodable codes. Goldreich et al. recently proved such bounds
for the special case of linear locally decodable codes.
Our proof shows that a 2-query locally decodable code can be decoded
with only 1 quantum query, and then ... more >>>


TR03-087 | 10th December 2003
Richard Beigel, Lance Fortnow, William Gasarch

A Nearly Tight Bound for Private Information Retrieval Protocols

Comments: 1

We show that any 1-round 2-server Private Information
Retrieval Protocol where the answers are 1-bit long must ask questions
that are at least $n-2$ bits long, which is nearly equal to the known
$n-1$ upper bound. This improves upon the approximately $0.25n$ lower
bound of Kerenidis and de Wolf while ... more >>>


TR05-009 | 14th December 2004
David P. Woodruff, Sergey Yekhanin

A Geometric Approach to Information-Theoretic Private Information Retrieval

A t-private private information retrieval (PIR) scheme allows a user to retrieve the i-th bit of an n-bit string x replicated among k servers, while any coalition of up to t servers learns no information about i. We present a new geometric approach to PIR, and obtain (1) A t-private ... more >>>


TR06-050 | 18th April 2006
Alexander Razborov, Sergey Yekhanin

An Omega(n^{1/3}) Lower Bound for Bilinear Group Based Private Information Retrieval

A two server private information retrieval (PIR) scheme
allows a user U to retrieve the i-th bit of an
n-bit string x replicated between two servers while each
server individually learns no information about i. The main
parameter of interest in a PIR scheme is its communication
complexity, namely the ... more >>>


TR06-127 | 7th October 2006
Sergey Yekhanin

New Locally Decodable Codes and Private Information Retrieval Schemes

A q-query Locally Decodable Code (LDC) encodes an n-bit message
x as an N-bit codeword C(x), such that one can
probabilistically recover any bit x_i of the message
by querying only q bits of the codeword C(x), even after
some constant fraction of codeword bits has been corrupted.

We give ... more >>>


TR07-022 | 20th February 2007
Rafail Ostrovsky, William Skeith

Algebraic Lower Bounds for Computing on Encrypted Data

In cryptography, there has been tremendous success in building
primitives out of homomorphic semantically-secure encryption
schemes, using homomorphic properties in a black-box way. A few
notable examples of such primitives include items like private
information retrieval schemes and collision-resistant hash functions. In this paper, we illustrate a general
methodology for ... more >>>


TR08-069 | 5th August 2008
Klim Efremenko

3-Query Locally Decodable Codes of Subexponential Length

Locally Decodable Codes (LDC) allow one to decode any particular
symbol of the input message by making a constant number of queries
to a codeword, even if a constant fraction of the codeword is
damaged. In recent work ~\cite{Yekhanin08} Yekhanin constructs a
$3$-query LDC with sub-exponential length of size
$\exp(\exp(O(\frac{\log ... more >>>


TR10-173 | 9th November 2010
Yeow Meng Chee, Tao Feng, San Ling, Huaxiong Wang, Liang Feng Zhang

Query-Efficient Locally Decodable Codes

A $k$-query locally decodable code (LDC)
$\textbf{C}:\Sigma^{n}\rightarrow \Gamma^{N}$ encodes each message $x$ into
a codeword $\textbf{C}(x)$ such that each symbol of $x$ can be probabilistically
recovered by querying only $k$ coordinates of $\textbf{C}(x)$, even after a
constant fraction of the coordinates have been corrupted.
Yekhanin (2008)
constructed a $3$-query LDC ... more >>>


TR14-094 | 24th July 2014
Zeev Dvir, Sivakanth Gopi

2-Server PIR with sub-polynomial communication

A 2-server Private Information Retrieval (PIR) scheme allows a user to retrieve the $i$th bit of an $n$-bit database replicated among two servers (which do not communicate) while not revealing any information about $i$ to either server. In this work we construct a 1-round 2-server PIR with total communication cost ... more >>>


TR15-086 | 28th May 2015
Jop Briet

On Embeddings of $\ell_1^k$ from Locally Decodable Codes

We show that any $q$-query locally decodable code (LDC) gives a copy of $\ell_1^k$ with small distortion in the Banach space of $q$-linear forms on $\ell_{p_1}^N\times\cdots\times\ell_{p_q}^N$, provided $1/p_1 + \cdots + 1/p_q \leq 1$ and where $k$, $N$, and the distortion are simple functions of the code parameters. We exhibit ... more >>>


TR24-183 | 20th November 2024
Fatemeh Ghasemi, Swastik Kopparty, Madhu Sudan

Improved PIR Schemes using Matching Vectors and Derivatives

In this paper, we construct new t-server Private Information Retrieval (PIR) schemes with communication complexity subpolynomial in the previously best known, for all but finitely many t. Our results are
based on combining derivatives (in the spirit of Woodruff-Yekhanin) with the Matching Vector
based PIRs of Yekhanin and Efremenko. Previously ... more >>>




ISSN 1433-8092 | Imprint