We consider the Traveling Salesperson Problem (TSP) restricted
to Euclidean spaces of dimension at most k(n), where n is the number of
cities. We are interested in the relation between the asymptotic growth of
k(n) and the approximability of the problem. We show that the problem is ...
more >>>
We consider separations of reducibilities in the context of
resource-bounded measure theory. First, we show a result on
polynomial-time bounded reducibilities: for every p-random set R,
there is a set which is reducible to R with k+1 non-adaptive
queries, but is not reducible to any other p-random set with ...
more >>>
We give the first extension of the result due to Paul, Pippenger,
Szemeredi and Trotter that deterministic linear time is distinct from
nondeterministic linear time. We show that DTIME(n \sqrt(log^{*}(n)))
\neq NTIME(n \sqrt(log^{*}(n))). We show that atleast one of the
following statements holds: (1) P \neq L ...
more >>>
We show that the counting classes AWPP and APP [Li 1993] are more robust
than previously thought. Our results identify asufficient condition for
a language to be low for PP, and we show that this condition is at least
as weak as other previously studied criteria. Our results imply that
more >>>
Randomized search heuristics like local search, simulated annealing or all kinds of evolutionary algorithms have many applications. However, for most problems the best worst-case expected run times are achieved by more problem-specific algorithms. This raises the question about the limits of general randomized search heuristics.
Here a framework called black-box ... more >>>
A recursive enumerator for a function $h$ is an algorithm $f$ which
enumerates for an input $x$ finitely many elements including $h(x)$.
$f$ is an $k(n)$-enumerator if for every input $x$ of length $n$, $h(x)$
is among the first $k(n)$ elements enumerated by $f$.
If there is a $k(n)$-enumerator for ...
more >>>
Complexity theory is built fundamentally on the notion of efficient
reduction among computational problems. Classical
reductions involve gadgets that map solution fragments of one problem to
solution fragments of another in one-to-one, or
possibly one-to-many, fashion. In this paper we propose a new kind of
reduction that allows for gadgets ...
more >>>
For circuit classes R, the fundamental computational problem, Min-R,
asks for the minimum R-size of a boolean function presented as a truth
table. Prominent examples of this problem include Min-DNF, and
Min-Circuit (also called MCSP). We begin by presenting a new reduction
proving that Min-DNF is NP-complete. It is significantly ...
more >>>
We show that for each k > 0, MA/1 (MA with 1 bit of advice) does not have circuits of size n^k. This implies the first superlinear circuit lower bounds for the promise versions of the classes MA, AM and ZPP_{||}^{NP}.
We extend our main result in several ways. For ... more >>>
We study the notion of "instance compressibility" of NP problems [Harnik-Naor06], closely related to the notion of kernelization in parameterized complexity theory [Downey-Fellows99, Flum-Grohe06, Niedermeier06]. A language $L$ in NP is instance compressible if there
is a polynomial-time computable function $f$ and a set $A$ such that
for each instance ...
more >>>
Given a set of observed economic choices, can one infer
preferences and/or utility functions for the players that are
consistent with the data? Questions of this type are called {\em
rationalization} or {\em revealed preference} problems in the
economic literature, and are the subject of a rich body of work.
Model theory is a branch of mathematical logic that investigates the
logical properties of mathematical structures. It has been quite
successfully applied to computational complexity resulting in an
area of research called descriptive complexity theory. Descriptive
complexity is essentially a syntactical characterization of
complexity classes using logical formalisms. However, there ...
more >>>
We investigate the complexity of the syntactic isomorphism problem of CNF Boolean Formulas (CSFI): given two CNF Boolean formulas $\varphi(a_{1},\ldots,a_{n})$ and $\varphi(b_{1},\ldots,b_{n})$ decide whether there exists a permutation of clauses, a permutation of literals and a bijection between their variables such that $\varphi(a_{1},\ldots,a_{n})$ and $\varphi(b_{1},\ldots,b_{n})$ become syntactically identical. We first ... more >>>
We survey recent developments related to the Minimum Circuit Size Problem
more >>>Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function $f:\{\pm1\}^{n} \to \{\pm1\}$ we give a poly$(k, \frac{1}{\varepsilon})$ query algorithm that distinguishes between functions that are $\gamma$-close to $k$-juntas and $(\gamma+\varepsilon)$-far from ... more >>>