Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > CONSTRAINT SATISFACTION PROBLEMS:
Reports tagged with Constraint satisfaction problems:
TR96-062 | 3rd December 1996
Sanjeev Khanna, Madhu Sudan, David P. Williamson

A Complete Characterization of the Approximability of Maximization Problems Derived from Boolean Constraint Satisfaction


In this paper we study the approximability of boolean constraint
satisfaction problems. A problem in this class consists of some
collection of ``constraints'' (i.e., functions
$f:\{0,1\}^k \rightarrow \{0,1\}$); an instance of a problem is a set
of constraints applied to specified subsets of $n$ boolean
variables. Schaefer earlier ... more >>>


TR96-064 | 11th December 1996
Sanjeev Khanna, Madhu Sudan, Luca Trevisan

Constraint satisfaction: The approximability of minimization problems.


This paper continues the work initiated by Creignou [Cre95] and
Khanna, Sudan and Williamson [KSW96] who classify maximization
problems derived from boolean constraint satisfaction. Here we
study the approximability of {\em minimization} problems derived
thence. A problem in this framework is characterized by a
collection F ... more >>>


TR04-051 | 10th June 2004
Zdenek Dvorák, Daniel Král, Ondrej Pangrác

Locally consistent constraint satisfaction problems

An instance of a constraint satisfaction problem is $l$-consistent
if any $l$ constraints of it can be simultaneously satisfied.
For a set $\Pi$ of constraint types, $\rho_l(\Pi)$ denotes the largest ratio of constraints which can be satisfied in any $l$-consistent instance composed by constraints from the set $\Pi$. In the ... more >>>


TR04-091 | 29th September 2004
Ondrej Klíma, Pascal Tesson, Denis Thérien

Dichotomies in the Complexity of Solving Systems of Equations over Finite Semigroups

We consider the problem of testing whether a given system of equations
over a fixed finite semigroup S has a solution. For the case where
S is a monoid, we prove that the problem is computable in polynomial
time when S is commutative and is the union of its subgroups
more >>>


TR05-059 | 9th May 2005
Víctor Dalmau, Ricard Gavaldà, Pascal Tesson, Denis Thérien

Tractable Clones of Polynomials over Semigroups

It is well known that coset-generating relations lead to tractable
constraint satisfaction problems. These are precisely the relations closed
under the operation $xy^{-1}z$ where the multiplication is taken in
some finite group. Bulatov et al. have on the other hand shown that
any clone containing the multiplication of some ``block-group'' ... more >>>


TR07-023 | 26th February 2007
Heribert Vollmer, Michael Bauland, Elmar Böhler, Nadia Creignou, Steffen Reith, Henning Schnoor

The Complexity of Problems for Quantified Constraints

In this paper we will look at restricted versions of the evaluation problem, the model checking problem, the equivalence problem, and the counting problem for quantified propositional formulas, both with and without bound on the number of quantifier alternations. The restrictions are such that we consider formulas in conjunctive normal-form ... more >>>


TR07-024 | 5th March 2007
Laszlo Egri, Benoit Larose, Pascal Tesson

Symmetric Datalog and Constraint Satisfaction Problems in Logspace

We introduce symmetric Datalog, a syntactic restriction of linear
Datalog and show that its expressive power is exactly that of
restricted symmetric monotone Krom SNP. The deep result of
Reingold on the complexity of undirected
connectivity suffices to show that symmetric Datalog queries can be
evaluated in logarithmic space. We ... more >>>


TR07-025 | 5th March 2007
Benoit Larose, Pascal Tesson, Pascal Tesson

Universal Algebra and Hardness Results for Constraint Satisfaction Problems

We present algebraic conditions on constraint languages \Gamma
that ensure the hardness of the constraint satisfaction problem
CSP(\Gamma) for complexity classes L, NL, P, NP and Mod_pL.
These criteria also give non-expressibility results for various
restrictions of Datalog. Furthermore, we show that if
CSP(\Gamma) is not first-order definable then it ... more >>>


TR09-059 | 2nd July 2009
Gábor Kun, Mario Szegedy

A NEW LINE OF ATTACK ON THE DICHOTOMY CONJECTURE

The well known dichotomy conjecture of Feder and
Vardi states that for every finite family Γ of constraints CSP(Γ) is
either polynomially solvable or NP-hard. Bulatov and Jeavons re-
formulated this conjecture in terms of the properties of the algebra
P ol(Γ), where the latter is ... more >>>


TR10-017 | 10th February 2010
Jonathan Ullman, Salil Vadhan

PCPs and the Hardness of Generating Synthetic Data

Revisions: 4

Assuming the existence of one-way functions, we show that there is no
polynomial-time, differentially private algorithm $A$ that takes a database
$D\in (\{0,1\}^d)^n$ and outputs a ``synthetic database'' $\hat{D}$ all of whose two-way
marginals are approximately equal to those of $D$. (A two-way marginal is the fraction
of database rows ... more >>>


TR10-106 | 17th June 2010
Yuichi Yoshida

Optimal Constant-Time Approximation Algorithms and (Unconditional) Inapproximability Results for Every Bounded-Degree CSP

Revisions: 1

Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot's Unique Games Conjecture (STOC 2002) is true, then for every constraint satisfaction problem (CSP), the best approximation ratio is attained by a certain simple semidefinite programming and a rounding scheme for it.
In this paper, we show that a ... more >>>


TR12-103 | 16th August 2012
Arnab Bhattacharyya, Yuichi Yoshida

Testing Assignments of Boolean CSPs

Given an instance $\mathcal{I}$ of a CSP, a tester for $\mathcal{I}$ distinguishes assignments satisfying $\mathcal{I}$ from those which are far from any assignment satisfying $\mathcal{I}$. The efficiency of a tester is measured by its query complexity, the number of variable assignments queried by the algorithm. In this paper, we characterize ... more >>>


TR12-151 | 6th November 2012
Subhash Khot, Madhur Tulsiani, Pratik Worah

The Complexity of Somewhat Approximation Resistant Predicates

Revisions: 1

A boolean predicate $f:\{0,1\}^k\to\{0,1\}$ is said to be {\em somewhat approximation resistant} if for some constant $\tau > \frac{|f^{-1}(1)|}{2^k}$, given a $\tau$-satisfiable instance of the MAX-$k$-CSP$(f)$ problem, it is NP-hard to find an assignment that {\it strictly beats} the naive algorithm that outputs a uniformly random assignment. Let $\tau(f)$ denote ... more >>>


TR13-075 | 23rd May 2013
Subhash Khot, Madhur Tulsiani, Pratik Worah

A Characterization of Strong Approximation Resistance

For a predicate $f:\{-1,1\}^k \mapsto \{0,1\}$ with $\rho(f) = \frac{|f^{-1}(1)|}{2^k}$, we call the predicate strongly approximation resistant if given a near-satisfiable instance of CSP$(f)$, it is computationally hard to find an assignment such that the fraction of constraints satisfied is outside the range $[\rho(f)-\Omega(1), \rho(f)+\Omega(1)]$.

We present a characterization of ... more >>>


TR13-146 | 20th October 2013
Subhash Khot, Madhur Tulsiani, Pratik Worah

A Characterization of Approximation Resistance

Revisions: 1

A predicate $f:\{-1,1\}^k \mapsto \{0,1\}$ with $\rho(f) = \frac{|f^{-1}(1)|}{2^k}$ is called {\it approximation resistant} if given a near-satisfiable instance of CSP$(f)$, it is computationally hard to find an assignment that satisfies at least $\rho(f)+\Omega(1)$ fraction of the constraints.

We present a complete characterization of approximation resistant predicates under the ... more >>>


TR14-034 | 3rd March 2014
Gábor Ivanyos, Raghav Kulkarni, Youming Qiao, Miklos Santha, Aarthi Sundaram

On the complexity of trial and error for constraint satisfaction problems

In a recent work of Bei, Chen and Zhang (STOC 2013), a trial and error model of computing was introduced, and applied to some constraint satisfaction problems. In this model the input is hidden by an oracle which, for a candidate assignment, reveals some information about a violated constraint if ... more >>>


TR14-098 | 30th July 2014
Amey Bhangale, Swastik Kopparty, Sushant Sachdeva

Simultaneous Approximation of Constraint Satisfaction Problems

Given $k$ collections of 2SAT clauses on the same set of variables $V$, can we find one assignment that satisfies a large fraction of clauses from each collection? We consider such simultaneous constraint satisfaction problems, and design the first nontrivial approximation algorithms in this context.

Our main result is that ... more >>>


TR15-105 | 21st June 2015
Venkatesan Guruswami, Euiwoong Lee

Towards a Characterization of Approximation Resistance for Symmetric CSPs

A Boolean constraint satisfaction problem (CSP) is called approximation resistant if independently setting variables to $1$ with some probability $\alpha$ achieves the best possible approximation ratio for the fraction of constraints satisfied. We study approximation resistance of a natural subclass of CSPs that we call Symmetric Constraint Satisfaction Problems (SCSPs), ... more >>>


TR16-031 | 7th March 2016
Titus Dose

Complexity of Constraint Satisfaction Problems over Finite Subsets of Natural Numbers

Revisions: 5

We study the computational complexity of constraint satisfaction problems that are based on integer expressions and algebraic circuits. On input of a finite set of variables and a finite set of constraints the question is whether the variables can be mapped onto finite subsets of natural numbers (resp., finite intervals ... more >>>


TR16-117 | 31st July 2016
Mrinalkanti Ghosh, Madhur Tulsiani

From Weak to Strong LP Gaps for all CSPs

Revisions: 1

We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxations given by $\Omega\left(\frac{\log n}{\log \log n}\right)$ levels of the Sherali-Adams hierarchy on instances ... more >>>


TR17-141 | 19th September 2017
Joshua Brakensiek, Venkatesan Guruswami

A Family of Dictatorship Tests with Perfect Completeness for 2-to-2 Label Cover

We give a family of dictatorship tests with perfect completeness and low-soundness for 2-to-2 constraints. The associated 2-to-2 conjecture has been the basis of some previous inapproximability results with perfect completeness. However, evidence towards the conjecture in the form of integrality gaps even against weak semidefinite programs has been elusive. ... more >>>


TR18-118 | 20th June 2018
Alexander Durgin, Brendan Juba

Hardness of improper one-sided learning of conjunctions for all uniformly falsifiable CSPs

We consider several closely related variants of PAC-learning in which false-positive and false-negative errors are treated differently. In these models we seek to guarantee a given, low rate of false-positive errors and as few false-negative errors as possible given that we meet the false-positive constraint. Bshouty and Burroughs first observed ... more >>>


TR21-011 | 13th February 2021
Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Santhoshini Velusamy

Classification of the streaming approximability of Boolean CSPs

Revisions: 4 , Comments: 1

A Boolean constraint satisfaction problem (CSP), Max-CSP$(f)$, is a maximization problem specified by a constraint $f:\{-1,1\}^k\to\{0,1\}$. An instance of the problem consists of $m$ constraint applications on $n$ Boolean variables, where each constraint application applies the constraint to $k$ literals chosen from the $n$ variables and their negations. The goal ... more >>>


TR21-063 | 3rd May 2021
Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Santhoshini Velusamy

Approximability of all finite CSPs in the dynamic streaming setting

Revisions: 3

A constraint satisfaction problem (CSP), Max-CSP$({\cal F})$, is specified by a finite set of constraints ${\cal F} \subseteq \{[q]^k \to \{0,1\}\}$ for positive integers $q$ and $k$. An instance of the problem on $n$ variables is given by $m$ applications of constraints from ${\cal F}$ to subsequences of the $n$ ... more >>>


TR22-061 | 30th April 2022
Amey Bhangale, Subhash Khot, Dor Minzer

On Approximability of Satisfiable $k$-CSPs: I

We consider the $P$-CSP problem for $3$-ary predicates $P$ on satisfiable instances. We show that under certain conditions on $P$ and a $(1,s)$ integrality gap instance of the $P$-CSP problem, it can be translated into a dictatorship vs. quasirandomness test with perfect completeness and soundness $s+\varepsilon$, for every constant $\varepsilon>0$. ... more >>>


TR22-166 | 23rd November 2022
Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena, Huacheng Yu

Characterizing the Multi-Pass Streaming Complexity for Solving Boolean CSPs Exactly

We study boolean constraint satisfaction problems (CSPs) $\mathrm{Max}\text{-}\mathrm{CSP}^f_n$ for all predicates $f: \{ 0, 1 \} ^k \to \{ 0, 1 \}$. In these problems, given an integer $v$ and a list of constraints over $n$ boolean variables, each obtained by applying $f$ to a sequence of literals, we wish ... more >>>


TR23-054 | 20th April 2023
Amey Bhangale, Subhash Khot, Dor Minzer

On Approximability of Satisfiable $k$-CSPs: III

In this paper we study functions on the Boolean hypercube that have the property that after applying certain random restrictions, the restricted function is correlated to a linear function with non-negligible probability. If the given function is correlated with a linear function then this property clearly holds. Furthermore, the property ... more >>>


TR23-055 | 20th April 2023
Amey Bhangale, Subhash Khot, Dor Minzer

On Approximability of Satisfiable $k$-CSPs: II

Revisions: 1

Let $\Sigma$ be an alphabet and $\mu$ be a distribution on $\Sigma^k$ for some $k \geq 2$. Let $\alpha > 0$ be the minimum probability of a tuple in the support of $\mu$ (denoted by $supp(\mu)$). Here, the support of $\mu$ is the set of all tuples in $\Sigma^k$ that ... more >>>


TR24-129 | 27th August 2024
Amey Bhangale, Subhash Khot, Dor Minzer

On Approximability of Satisfiable k-CSPs: V

We propose a framework of algorithm vs. hardness for all Max-CSPs and demonstrate it for a large class of predicates. This framework extends the work of Raghavendra [STOC, 2008], who showed a similar result for almost satisfiable Max-CSPs.

Our framework is based on a new hybrid approximation algorithm, which uses ... more >>>




ISSN 1433-8092 | Imprint