  Under the auspices of the Computational Complexity Foundation (CCF)     REPORTS > KEYWORD > SIGN-RANK:
Reports tagged with Sign-rank:
TR07-112 | 25th September 2007
Alexander A. Sherstov

Unbounded-Error Communication Complexity of Symmetric Functions

The sign-rank of a real matrix M is the least rank
of a matrix R in which every entry has the same sign as the
corresponding entry of M. We determine the sign-rank of every
matrix of the form M=[ D(|x AND y|) ]_{x,y}, where
D:{0,1,...,n}->{-1,+1} is given and ... more >>>

TR08-016 | 26th February 2008
Alexander Razborov, Alexander A. Sherstov

The Sign-Rank of AC^0

The sign-rank of a matrix A=[A_{ij}] with +/-1 entries
is the least rank of a real matrix B=[B_{ij}] with A_{ij}B_{ij}>0
for all i,j. We obtain the first exponential lower bound on the
sign-rank of a function in AC^0. Namely, let
f(x,y)=\bigwedge_{i=1}^m\bigvee_{j=1}^{m^2} (x_{ij}\wedge y_{ij}).
We show that the matrix [f(x,y)]_{x,y} has ... more >>>

TR16-075 | 9th May 2016
Mark Bun, Justin Thaler

Improved Bounds on the Sign-Rank of AC$^0$

Revisions: 1

The sign-rank of a matrix $A$ with entries in $\{-1, +1\}$ is the least rank of a real matrix $B$ with $A_{ij} \cdot B_{ij} > 0$ for all $i, j$. Razborov and Sherstov (2008) gave the first exponential lower bounds on the sign-rank of a function in AC$^0$, answering an ... more >>>

ISSN 1433-8092 | Imprint