We study the question of whether the class DisNP of
disjoint pairs (A, B) of NP-sets contains a complete pair.
The question relates to the question of whether optimal
proof systems exist, and we relate it to the previously
studied question of whether there exists ...
more >>>
We study several properties of sets that are complete for NP.
We prove that if $L$ is an NP-complete set and $S \not\supseteq L$ is a p-selective sparse set, then $L - S$ is many-one-hard for NP. We demonstrate existence of a sparse set $S \in \mathrm{DTIME}(2^{2^{n}})$
such ...
more >>>
We investigate the class of disjoint NP-pairs under different reductions.
The structure of this class is intimately linked to the simulation order
of propositional proof systems, and we make use of the relationship between
propositional proof systems and theories of bounded arithmetic as the main
tool of our analysis.
more >>>
We prove that every disjoint NP-pair is polynomial-time, many-one equivalent to
the canonical disjoint NP-pair of some propositional proof system. Therefore, the degree structure of the class of disjoint NP-pairs and of all canonical pairs is
identical. Secondly, we show that this degree structure is not superficial: Assuming there exist ...
more >>>
The notion of an optimal acceptor for TAUT (the optimality
property is stated only for input strings from TAUT) comes from the line
of research aimed at resolving the question of whether optimal
propositional proof systems exist. In this paper we introduce two new
types of optimal acceptors, a D-N-optimal ...
more >>>
For a proof system P we introduce the complexity class DNPP(P)
of all disjoint NP-pairs for which the disjointness of the pair is
efficiently provable in the proof system P.
We exhibit structural properties of proof systems which make the
previously defined canonical NP-pairs of these proof systems hard ...
more >>>
Disjoint NP-pairs are a well studied complexity theoretic concept with
important applications in cryptography and propositional proof
complexity.
In this paper we introduce a natural generalization of the notion of
disjoint NP-pairs to disjoint k-tuples of NP-sets for k>1.
We define subclasses of ...
more >>>
In this paper we ask the question whether the extended Frege proof
system EF satisfies a weak version of the deduction theorem. We
prove that if this is the case, then complete disjoint NP-pairs
exist. On the other hand, if EF is an optimal proof system, ...
more >>>
We investigate the connection between propositional proof systems and their canonical pairs. It is known that simulations between proof systems translate to reductions between their canonical pairs. We focus on the opposite direction and study the following questions.
Q1: Where does the implication [can(f) \le_m can(g) => f \le_s ... more >>>
We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek (2006), as a family of unsatisfiable propositional formulas for which refutations of small size in any propositional proof system that possesses the feasible interpolation property imply an efficient *deterministic* refutation algorithm for random 3SAT with ... more >>>