Oded Goldreich, Madhu Sudan

We consider the existence of pairs of probability ensembles which

may be efficiently distinguished given $k$ samples

but cannot be efficiently distinguished given $k'<k$ samples.

It is well known that in any such pair of ensembles it cannot be that

both are efficiently computable

(and that such phenomena ...
more >>>

Salil Vadhan

In this paper, we give explicit constructions of extractors which work for

a source of any min-entropy on strings of length $n$. The first

construction extracts any constant fraction of the min-entropy using

O(log^2 n) additional random bits. The second extracts all the

min-entropy using O(log^3 n) additional random ...
more >>>

Stasys Jukna, Georg Schnitger

We show that recognizing the $K_3$-freeness and $K_4$-freeness of

graphs is hard, respectively, for two-player nondeterministic

communication protocols with exponentially many partitions and for

nondeterministic (syntactic) read-$s$ times branching programs.

The key ingradient is a generalization of a coloring lemma, due to

Papadimitriou and Sipser, which says that for every ...
more >>>

Piotr Indyk

Spielman showed that one can construct error-correcting codes capable

of correcting a constant fraction $\delta << 1/2$ of errors,

and that are encodable/decodable in linear time.

Guruswami and Sudan showed that it is possible to correct

more than $50\%$ of errors (and thus exceed the ``half of the ...
more >>>

Venkatesan Guruswami, Valentine Kabanets

We prove a version of the derandomized Direct Product Lemma for

deterministic space-bounded algorithms. Suppose a Boolean function

$g:\{0,1\}^n\to\{0,1\}$ cannot be computed on more than $1-\delta$

fraction of inputs by any deterministic time $T$ and space $S$

algorithm, where $\delta\leq 1/t$ for some $t$. Then, for $t$-step

walks $w=(v_1,\dots, v_t)$ ...
more >>>

Avi Wigderson, David Xiao

In this paper we give a randomness-efficient sampler for matrix-valued functions. Specifically, we show that a random walk on an expander approximates the recent Chernoff-like bound for matrix-valued functions of Ahlswede and Winter, in a manner which depends optimally on the spectral gap. The proof uses perturbation theory, and is ... more >>>

Luca Trevisan

In combinatorics, the probabilistic method is a very powerful tool to prove the existence of combinatorial objects with interesting and useful properties. Explicit constructions of objects with such properties are often very difficult, or unknown. In computer science,

probabilistic algorithms are sometimes simpler and more efficient

than the best known ...
more >>>

Venkatesan Guruswami, James R. Lee, Alexander Razborov

We give an explicit (in particular, deterministic polynomial time)

construction of subspaces $X

\subseteq \R^N$ of dimension $(1-o(1))N$ such that for every $x \in X$,

$$(\log N)^{-O(\log\log\log N)} \sqrt{N}\, \|x\|_2 \leq \|x\|_1 \leq \sqrt{N}\, \|x\|_2.$$

If we are allowed to use $N^{1/\log\log N}\leq N^{o(1)}$ random bits

and ...
more >>>

Zeev Dvir, Amir Shpilka

In this paper we study the problem of explicitly constructing a

{\em dimension expander} raised by \cite{BISW}: Let $\mathbb{F}^n$

be the $n$ dimensional linear space over the field $\mathbb{F}$.

Find a small (ideally constant) set of linear transformations from

$\F^n$ to itself $\{A_i\}_{i \in I}$ such that for every linear

more >>>

Noga Alon, Shai Gutner

Color Coding is an algorithmic technique for deciding efficiently

if a given input graph contains a path of a given length (or

another small subgraph of constant tree-width). Applications of the

method in computational biology motivate the study of similar

algorithms for counting the number of copies of a ...
more >>>

Vikraman Arvind, Partha Mukhopadhyay, Prajakta Nimbhorkar, Yadu Vasudev

Let $G=\langle S\rangle$ be a solvable permutation group given as input by generating set $S$. I.e.\ $G$ is a solvable subgroup of the symmetric group $S_n$. We give a deterministic polynomial-time algorithm that computes an expanding generator set for $G$. More precisely, given a constant $\lambda <1$ we can compute ... more >>>

Aditya Bhaskara, Devendra Desai, Srikanth Srinivasan

We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) ... more >>>

Dmytro Gavinsky, Pavel Pudlak

We introduce a new concept, which we call partition expanders. The basic idea is to study quantitative properties of graphs in a slightly different way than it is in the standard definition of expanders. While in the definition of expanders it is required that the number of edges between any ... more >>>

Amey Bhangale, Ramprasad Saptharishi, Girish Varma, Rakesh Venkat

A recent result of Moshkovitz~\cite{Moshkovitz14} presented an ingenious method to provide a completely elementary proof of the Parallel Repetition Theorem for certain projection games via a construction called fortification. However, the construction used in \cite{Moshkovitz14} to fortify arbitrary label cover instances using an arbitrary extractor is insufficient to prove parallel ... more >>>

Benny Applebaum, Pavel Raykov

We present direct constructions of pseudorandom function (PRF) families based on Goldreich's one-way function. Roughly speaking, we assume that non-trivial local mappings $f:\{0,1\}^n\rightarrow \{0,1\}^m$ whose input-output dependencies graph form an expander are hard to invert. We show that this one-wayness assumption yields PRFs with relatively low complexity. This includes weak ... more >>>

Yinan Li, Youming Qiao, Avi Wigderson, Yuval Wigderson, Chuanqi Zhang

A fundamental fact about bounded-degree graph expanders is that three notions of expansion---vertex expansion, edge expansion, and spectral expansion---are all equivalent. In this paper, we study to what extent such a statement is true for linear-algebraic notions of expansion.

There are two well-studied notions of linear-algebraic expansion, namely dimension expansion ... more >>>