We propose a new general primitive called lossy trapdoor
functions (lossy TDFs), and realize it under a variety of different
number theoretic assumptions, including hardness of the decisional
Diffie-Hellman (DDH) problem and the worst-case hardness of
standard lattice problems.
Using lossy TDFs, we develop a new approach for constructing ... more >>>
We show how to construct a variety of ``trapdoor'' cryptographic tools
assuming the worst-case hardness of standard lattice problems (such as
approximating the shortest nonzero vector to within small factors).
The applications include trapdoor functions with \emph{preimage
sampling}, simple and efficient ``hash-and-sign'' digital signature
schemes, universally composable oblivious transfer, ...
more >>>