Emanuele Viola, Avi Wigderson

In this paper we study the one-way multi-party communication model,

in which every party speaks exactly once in its turn. For every

fixed $k$, we prove a tight lower bound of

$\Omega{n^{1/(k-1)}}$ on the probabilistic communication

complexity of pointer jumping in a $k$-layered tree, where the

pointers of the $i$-th ...
more >>>

Arkadev Chattopadhyay, Anil Ada

We extend the 'Generalized Discrepancy' technique suggested by Sherstov to the `Number on the Forehead' model of multiparty communication. This allows us to prove strong lower bounds of n^{\Omega(1)} on the communication needed by k players to compute the Disjointness function, provided $k$ is a constant. In general, our method ... more >>>

Troy Lee, Adi Shraibman

We show that disjointness requires randomized communication

Omega(\frac{n^{1/2k}}{(k-1)2^{k-1}2^{2^{k-1}}})

in the general k-party number-on-the-forehead model of complexity.

The previous best lower bound was Omega(\frac{log n}{k-1}). By

results of Beame, Pitassi, and Segerlind, this implies

2^{n^{Omega(1)}} lower bounds on the size of tree-like Lovasz-Schrijver

proof systems needed to refute certain unsatisfiable ...
more >>>

Pavel Hrubes, Amir Yehudayoff

We give an example of a non-commutative monotone polynomial f which can be computed by a polynomial-size non-commutative formula, but every monotone non-commutative circuit computing f must have an exponential size. In the non-commutative setting this gives, a fortiori, an exponential separation between monotone and general formulas, monotone and general ... more >>>

Mark Braverman, Ankur Moitra

We prove an unconditional lower bound that any linear program that achieves an $O(n^{1-\epsilon})$ approximation for clique has size $2^{\Omega(n^\epsilon)}$. There has been considerable recent interest in proving unconditional lower bounds against any linear program. Fiorini et al proved that there is no polynomial sized linear program for traveling salesman. ... more >>>

Joshua Brody, Amit Chakrabarti, Ranganath Kondapally

The \textsc{equality} problem is usually one's first encounter with

communication complexity and is one of the most fundamental problems in the

field. Although its deterministic and randomized communication complexity

were settled decades ago, we find several new things to say about the

problem by focusing on two subtle aspects. The ...
more >>>

Mark Braverman, Ankit Garg, Denis Pankratov, Omri Weinstein

We develop a new local characterization of the zero-error information complexity function for two party communication problems, and use it to compute the exact internal and external information complexity of the 2-bit AND function: $IC(AND,0) = C_{\wedge}\approx 1.4923$ bits, and $IC^{ext}(AND,0) = \log_2 3 \approx 1.5839$ bits. This leads to ... more >>>

Anup Rao, Amir Yehudayoff

We show that the deterministic multiparty communication complexity of set disjointness for $k$ parties on a universe of size $n$ is $\Omega(n/4^k)$. We also simplify Sherstov's proof

showing an $\Omega(\sqrt{n}/(k2^k))$ lower bound for the randomized communication complexity of set disjointness.

Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao, Dave Touchette

We prove a near optimal round-communication tradeoff for the two-party quantum communication complexity of disjointness. For protocols with $r$ rounds, we prove a lower bound of $\tilde{\Omega}(n/r)$ on the communication required for computing disjointness of input size $n$, which is optimal up to logarithmic factors. The previous best lower bound ... more >>>

Dmitry Itsykson, Artur Riazanov

A canonical communication problem ${\rm Search}(\phi)$ is defined for every unsatisfiable CNF $\phi$: an assignment to the variables of $\phi$ is distributed among the communicating parties, they are to find a clause of $\phi$ falsified by this assignment. Lower bounds on the randomized $k$-party communication complexity of ${\rm Search}(\phi)$ in ... more >>>