Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > NONDETERMINISM:
Reports tagged with nondeterminism:
TR96-011 | 29th January 1996
Stephen A. Bloch, Jonathan F. Buss, Judy Goldsmith

Sharply Bounded Alternation within P

We define the sharply bounded hierarchy, SBHQL, a hierarchy of
classes within P, using quasilinear-time computation and
quantification over values of length log n. It generalizes the
limited nondeterminism hierarchy introduced by Buss and Goldsmith,
while retaining the invariance properties. The new hierarchy has
several alternative characterizations.

We define ... more >>>


TR97-029 | 20th August 1997
Pavol Duris, Juraj Hromkovic, Jose' D. P. Rolim, Georg Schnitger

On the Power of Las Vegas for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations

The study of the computational power of randomized
computations is one of the central tasks of complexity theory. The
main goal of this paper is the comparison of the power of Las Vegas
computation and deterministic respectively nondeterministic
computation. We investigate the power of Las Vegas computation for ... more >>>


TR97-030 | 25th August 1997
Martin Sauerhoff

On Nondeterminism versus Randomness for Read-Once Branching Programs

Randomized branching programs are a probabilistic model of computation
defined in analogy to the well-known probabilistic Turing machines.
In this paper, we present complexity theoretic results for randomized
read-once branching programs.
Our main result shows that nondeterminism can be more powerful than
randomness for read-once branching programs. We present a ... more >>>


TR98-018 | 27th March 1998
Martin Sauerhoff

Randomness and Nondeterminism are Incomparable for Read-Once Branching Programs

Comments: 1

We extend the tools for proving lower bounds for randomized branching
programs by presenting a new technique for the read-once case which is
applicable to a large class of functions. This technique fills the gap
between simple methods only applicable for OBDDs and the well-known
"rectangle technique" of Borodin, Razborov ... more >>>


TR99-007 | 10th March 1999
Juraj Hromkovic, Georg Schnitger

On the Power of Las Vegas II: Two-Way Finite Automata

The investigation of the computational power of randomized
computations is one of the central tasks of current complexity and
algorithm theory. This paper continues in the comparison of the computational
power of LasVegas computations with the computational power of deterministic
and nondeterministic ones. While for one-way ... more >>>


TR00-048 | 3rd July 2000
Beate Bollig

Restricted Nondeterministic Read-Once Branching Programs and an Exponential Lower Bound for Integer Multiplication

Branching programs are a well established computation model for
Boolean functions, especially read-once branching programs have
been studied intensively.
In this paper the expressive power of nondeterministic read-once
branching programs, i.e., the class of functions
representable in polynomial size, is investigated.
For that reason two restricted models of nondeterministic read-once
more >>>


TR00-057 | 25th July 2000
Martin Sauerhoff

An Improved Hierarchy Result for Partitioned BDDs

One of the great challenges of complexity theory is the problem of
analyzing the dependence of the complexity of Boolean functions on the
resources nondeterminism and randomness. So far, this problem could be
solved only for very few models of computation. For so-called
partitioned binary decision diagrams, which are a ... more >>>


TR00-058 | 1st August 2000
Martin Sauerhoff

Approximation of Boolean Functions by Combinatorial Rectangles

This paper deals with the number of monochromatic combinatorial
rectangles required to approximate a Boolean function on a constant
fraction of all inputs, where each rectangle may be defined with
respect to its own partition of the input variables. The main result
of the paper is that the number of ... more >>>


TR00-076 | 24th August 2000
Juraj Hromkovic, Juhani Karhumaki, Hartmut Klauck, Georg Schnitger, Sebastian Seibert

Measures of Nondeterminism in Finite Automata

While deterministic finite automata seem to be well understood, surprisingly
many important problems
concerning nondeterministic finite automata (nfa's) remain open.

One such problem area is the study of different measures of nondeterminism in
finite automata and the
estimation of the sizes of minimal nondeterministic finite automata. In this
paper the ... more >>>


TR01-101 | 14th December 2001
Philipp Woelfel

A Lower Bound Technique for Restricted Branching Programs and Applications

We present a new lower bound technique for two types of restricted
Branching Programs (BPs), namely for read-once BPs (BP1s) with
restricted amount of nondeterminism and for (1,+k)-BPs. For this
technique, we introduce the notion of (strictly) k-wise l-mixed
Boolean functions, which generalizes the concept of l-mixedness ... more >>>


TR02-033 | 11th June 2002
Beate Bollig

A very simple function that requires exponential size nondeterministic graph-driven read-once branching programs

Branching programs are a well-established computation
model for boolean functions, especially read-once
branching programs (BP1s) have been studied intensively.
A very simple function $f$ in $n^2$ variables is
exhibited such that both the function $f$ and its negation
$\neg f$ can be computed by $\Sigma^3_p$-circuits,
the ... more >>>


TR02-038 | 5th June 2002
Rahul Santhanam

Resource Tradeoffs and Derandomization

Revisions: 1

We consider uniform assumptions for derandomization. We provide
intuitive evidence that BPP can be simulated non-trivially in
deterministic time by showing that (1) P \not \subseteq i.o.i.PLOYLOGSPACE
implies BPP \subseteq SUBEXP (2) P \not \subseteq SUBPSPACE implies BPP
= P. These results extend and complement earlier work of ... more >>>


TR07-079 | 11th August 2007
Emanuele Viola, Avi Wigderson

One-way multi-party communication lower bound for pointer jumping with applications

In this paper we study the one-way multi-party communication model,
in which every party speaks exactly once in its turn. For every
fixed $k$, we prove a tight lower bound of
$\Omega{n^{1/(k-1)}}$ on the probabilistic communication
complexity of pointer jumping in a $k$-layered tree, where the
pointers of the $i$-th ... more >>>


TR10-131 | 9th July 2010
Nathaniel Bryans, Ehsan Chiniforooshan, David Doty, Lila Kari, Shinnosuke Seki

The Power of Nondeterminism in Self-Assembly

We investigate the role of nondeterminism in Winfree's abstract Tile Assembly Model (aTAM), which was conceived to model artificial molecular self-assembling systems constructed from DNA. Designing tile systems that assemble shapes, due to the algorithmic richness of the aTAM, is a form of sophisticated "molecular programming". Of particular practical importance ... more >>>


TR15-148 | 9th September 2015
Marco Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mikhailin, Ramamohan Paturi, Stefan Schneider

Nondeterministic extensions of the Strong Exponential Time Hypothesis and consequences for non-reducibility

Revisions: 1

We introduce the Nondeterministic Strong Exponential Time Hypothesis
(NSETH) as a natural extension of the Strong Exponential Time
Hypothesis (SETH). We show that both refuting and proving
NSETH would have interesting consequences.

In particular we show that disproving NSETH would ... more >>>


TR21-049 | 1st April 2021
Juraj Hromkovic

Kolmogorov complexity and nondeterminism versus determinism for polynomial time computations

Revisions: 1

We call any consistent and sufficiently powerful formal theory that enables to algorithmically in polynomial time verify whether a text is a proof \textbf{efficiently verifiable mathematics} (ev-mathematics). We study the question whether nondeterminism is more powerful than determinism for polynomial time computations in the framework of ev-mathematics. Our main results ... more >>>


TR22-010 | 18th January 2022
Marshall Ball, Dana Dachman-Soled, Julian Loss

(Nondeterministic) Hardness vs. Non-Malleability

We present the first truly explicit constructions of \emph{non-malleable codes} against tampering by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our construction is secure provided E requires exponential size nondeterministic circuits, an assumption from the derandomization literature.

Prior works on NMC ... more >>>




ISSN 1433-8092 | Imprint