We define the sharply bounded hierarchy, SBHQL, a hierarchy of
classes within P, using quasilinear-time computation and
quantification over values of length log n. It generalizes the
limited nondeterminism hierarchy introduced by Buss and Goldsmith,
while retaining the invariance properties. The new hierarchy has
several alternative characterizations.
We define ... more >>>
The study of the computational power of randomized
computations is one of the central tasks of complexity theory. The
main goal of this paper is the comparison of the power of Las Vegas
computation and deterministic respectively nondeterministic
computation. We investigate the power of Las Vegas computation for ...
more >>>
Randomized branching programs are a probabilistic model of computation
defined in analogy to the well-known probabilistic Turing machines.
In this paper, we present complexity theoretic results for randomized
read-once branching programs.
Our main result shows that nondeterminism can be more powerful than
randomness for read-once branching programs. We present a ...
more >>>
We extend the tools for proving lower bounds for randomized branching
programs by presenting a new technique for the read-once case which is
applicable to a large class of functions. This technique fills the gap
between simple methods only applicable for OBDDs and the well-known
"rectangle technique" of Borodin, Razborov ...
more >>>
The investigation of the computational power of randomized
computations is one of the central tasks of current complexity and
algorithm theory. This paper continues in the comparison of the computational
power of LasVegas computations with the computational power of deterministic
and nondeterministic ones. While for one-way ...
more >>>
Branching programs are a well established computation model for
Boolean functions, especially read-once branching programs have
been studied intensively.
In this paper the expressive power of nondeterministic read-once
branching programs, i.e., the class of functions
representable in polynomial size, is investigated.
For that reason two restricted models of nondeterministic read-once
more >>>
One of the great challenges of complexity theory is the problem of
analyzing the dependence of the complexity of Boolean functions on the
resources nondeterminism and randomness. So far, this problem could be
solved only for very few models of computation. For so-called
partitioned binary decision diagrams, which are a ...
more >>>
This paper deals with the number of monochromatic combinatorial
rectangles required to approximate a Boolean function on a constant
fraction of all inputs, where each rectangle may be defined with
respect to its own partition of the input variables. The main result
of the paper is that the number of ...
more >>>
While deterministic finite automata seem to be well understood, surprisingly
many important problems
concerning nondeterministic finite automata (nfa's) remain open.
One such problem area is the study of different measures of nondeterminism in
finite automata and the
estimation of the sizes of minimal nondeterministic finite automata. In this
paper the ...
more >>>
We present a new lower bound technique for two types of restricted
Branching Programs (BPs), namely for read-once BPs (BP1s) with
restricted amount of nondeterminism and for (1,+k)-BPs. For this
technique, we introduce the notion of (strictly) k-wise l-mixed
Boolean functions, which generalizes the concept of l-mixedness ...
more >>>
Branching programs are a well-established computation
model for boolean functions, especially read-once
branching programs (BP1s) have been studied intensively.
A very simple function $f$ in $n^2$ variables is
exhibited such that both the function $f$ and its negation
$\neg f$ can be computed by $\Sigma^3_p$-circuits,
the ...
more >>>
We consider uniform assumptions for derandomization. We provide
intuitive evidence that BPP can be simulated non-trivially in
deterministic time by showing that (1) P \not \subseteq i.o.i.PLOYLOGSPACE
implies BPP \subseteq SUBEXP (2) P \not \subseteq SUBPSPACE implies BPP
= P. These results extend and complement earlier work of ...
more >>>
In this paper we study the one-way multi-party communication model,
in which every party speaks exactly once in its turn. For every
fixed $k$, we prove a tight lower bound of
$\Omega{n^{1/(k-1)}}$ on the probabilistic communication
complexity of pointer jumping in a $k$-layered tree, where the
pointers of the $i$-th ...
more >>>
We investigate the role of nondeterminism in Winfree's abstract Tile Assembly Model (aTAM), which was conceived to model artificial molecular self-assembling systems constructed from DNA. Designing tile systems that assemble shapes, due to the algorithmic richness of the aTAM, is a form of sophisticated "molecular programming". Of particular practical importance ... more >>>
We introduce the Nondeterministic Strong Exponential Time Hypothesis
(NSETH) as a natural extension of the Strong Exponential Time
Hypothesis (SETH). We show that both refuting and proving
NSETH would have interesting consequences.
In particular we show that disproving NSETH would ...
more >>>
We call any consistent and sufficiently powerful formal theory that enables to algorithmically in polynomial time verify whether a text is a proof \textbf{efficiently verifiable mathematics} (ev-mathematics). We study the question whether nondeterminism is more powerful than determinism for polynomial time computations in the framework of ev-mathematics. Our main results ... more >>>
We present the first truly explicit constructions of \emph{non-malleable codes} against tampering by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our construction is secure provided E requires exponential size nondeterministic circuits, an assumption from the derandomization literature.
Prior works on NMC ...
more >>>