Marek Karpinski, Wojciech Rytter, Ayumi Shinohara

We consider strings which are succinctly described. The description

is in terms of straight-line programs in which the constants are

symbols and the only operation is the concatenation. Such

descriptions correspond to the systems of recurrences or to

context-free grammars generating single words. The descriptive ...
more >>>

Meena Mahajan, V Vinay

In this paper we approach the problem of computing the characteristic

polynomial of a matrix from the combinatorial viewpoint. We present

several combinatorial characterizations of the coefficients of the

characteristic polynomial, in terms of walks and closed walks of

different kinds in the underlying graph. We develop algorithms based

more >>>

Venkatesan Guruswami, Madhu Sudan

We present an improved list decoding algorithm for decoding

Reed-Solomon codes. Given an arbitrary string of length n, the

list decoding problem is that of finding all codewords within a

specified Hamming distance from the input string.

It is well-known that this decoding problem for Reed-Solomon

codes reduces to the ...
more >>>

Oded Goldreich, Dana Ron, Madhu Sudan

The Chinese Remainder Theorem states that a positive

integer m is uniquely specified by its remainder modulo

k relatively prime integers p_1,...,p_k, provided

m < \prod_{i=1}^k p_i. Thus the residues of m modulo

relatively prime integers p_1 < p_2 < ... < p_n

form a redundant representation of m if ...
more >>>

Till Tantau

Deciding whether a vertex in a graph is reachable from another

vertex has been studied intensively in complexity theory and is

well understood. For common types of graphs like directed graphs,

undirected graphs, dags or trees it takes a (possibly

nondeterministic) logspace machine to decide the reachability

problem, and ...
more >>>

Andrzej Lingas, Martin WahlĂ©n

We consider the ``minor'' and ``homeomorphic'' analogues of the maximum clique problem, i.e., the problems of determining the largest $h$ such that the input graph has a minor isomorphic to $K_h$ or a subgraph homeomorphic to $K_h,$ respectively.We show the former to be approximable within $O(\sqrt {n} \log^{1.5} n)$ by ... more >>>

Leonid Gurvits

Consider a homogeneous polynomial $p(z_1,...,z_n)$ of degree $n$ in $n$ complex variables .

Assume that this polynomial satisfies the property : \\

$|p(z_1,...,z_n)| \geq \prod_{1 \leq i \leq n} Re(z_i)$ on the domain $\{(z_1,...,z_n) : Re(z_i) \geq 0 , 1 \leq i \leq n \}$ . \\

We prove that ... more >>>

Diptarka Chakraborty, Nikhil R. Devanur, Vijay V. Vazirani

We study the structure of EG[2], the class of Eisenberg-Gale markets

with two agents. We prove that all markets in this class are rational and they

admit strongly polynomial algorithms whenever

the polytope containing the set of feasible utilities of the two agents can be described

via a combinatorial LP. ...
more >>>

Ashish Rastogi, Richard Cole

This paper considers the tradeoff between divisibility and the hardness of approximating

equilibrium prices. Tight bounds are obtained for smooth Fisher markets that obey a relaxed

weak gross substitutes property (WGS). A smooth market is one in which small changes in

prices cause only proportionately small changes ...
more >>>

Igor Oliveira

Different techniques have been used to prove several transference theorems of the form "nontrivial algorithms for a circuit class C yield circuit lower bounds against C". In this survey we revisit many of these results. We discuss how circuit lower bounds can be obtained from derandomization, compression, learning, and satisfiability ... more >>>