Irit Dinur, Madhu Sudan, Avi Wigderson

Given two binary linear codes R and C, their tensor product R \otimes C consists of all matrices with rows in R and columns in C. We analyze the "robustness" of the following test for this code (suggested by Ben-Sasson and Sudan~\cite{BenSasson-Sudan04}): Pick a random row (or column) and check ... more >>>

Or Meir

Given linear two codes R,C, their tensor product $R \otimes C$

consists of all matrices whose rows are codewords of R and whose

columns are codewords of C. The product $R \otimes C$ is said to

be robust if for every matrix M that is far from $R \otimes C$

more >>>

Oded Goldreich, Or Meir

Given two codes R,C, their tensor product $R \otimes C$ consists of all matrices whose rows are codewords of R and whose columns are codewords of C. The product $R \otimes C$ is said to be robust if for every matrix M that is far from $R \otimes C$ it ... more >>>

Eli Ben-Sasson, Michael Viderman

We continue the study of {\em robust} tensor codes and expand the

class of base codes that can be used as a starting point for the

construction of locally testable codes via robust two-wise tensor

products. In particular, we show that all unique-neighbor expander

codes and all locally correctable codes, ...
more >>>