Omer Reingold

We present a deterministic, log-space algorithm that solves

st-connectivity in undirected graphs. The previous bound on the

space complexity of undirected st-connectivity was

log^{4/3}() obtained by Armoni, Ta-Shma, Wigderson and

Zhou. As undirected st-connectivity is

complete for the class of problems solvable by symmetric,

non-deterministic, log-space computations (the class SL), ...
more >>>

Omer Reingold, Luca Trevisan, Salil Vadhan

Motivated by Reingold's recent deterministic log-space algorithm for Undirected S-T Connectivity (ECCC TR 04-94), we revisit the general RL vs. L question, obtaining the following results.

1. We exhibit a new complete problem for RL: S-T Connectivity restricted to directed graphs for which the random walk is promised to have ... more >>>

Eyal Rozenman, Salil Vadhan

We introduce a "derandomized" analogue of graph squaring. This

operation increases the connectivity of the graph (as measured by the

second eigenvalue) almost as well as squaring the graph does, yet only

increases the degree of the graph by a constant factor, instead of

squaring the degree.

One application of ... more >>>

Eyal Kaplan, Moni Naor, Omer Reingold

Constructions of k-wise almost independent permutations have been receiving a growing amount of attention in recent years. However, unlike the case of k-wise independent functions, the size of previously constructed families of such permutations is far from optimal.

In this paper we describe a method for reducing the size of ... more >>>

Kai-Min Chung, Omer Reingold, Salil Vadhan

We present a deterministic logspace algorithm for solving s-t connectivity on directed graphs if (i) we are given a stationary distribution for random walk on the graph and (ii) the random walk which starts at the source vertex $s$ has polynomial mixing time. This result generalizes the recent deterministic logspace ... more >>>

Venkatesan Guruswami, Adam Smith

In this paper, we consider coding schemes for computationally bounded channels, which can introduce an arbitrary set of errors as long as (a) the fraction of errors is bounded with high probability by a parameter p and (b) the process which adds the errors can be described by a sufficiently ... more >>>

Derrick Stolee, N. V. Vinodchandran

We consider the reachability problem for a certain class of directed acyclic graphs embedded on surfaces. Let ${\cal G}(m,g)$ be the class of directed acyclic graphs with $m = m(n)$ source vertices embedded on a surface (orientable or non-orientable) of genus $g = g(n)$. We give a log-space reduction that ... more >>>

Shiva Kintali

A celebrated theorem of Savitch states that NSPACE(S) is contained DSPACE(S^2). In particular, Savitch gave a deterministic algorithm to solve ST-CONNECTIVITY (an NL-complete problem) using O(log^2{n}) space, implying NL is in DSPACE(log^2{n}). While Savitchâ€™s theorem itself has not been improved in the last four decades, studying the space complexity of ... more >>>

Bill Fefferman, Ronen Shaltiel, Chris Umans, Emanuele Viola

The {\em hybrid argument}

allows one to relate

the {\em distinguishability} of a distribution (from

uniform) to the {\em

predictability} of individual bits given a prefix. The

argument incurs a loss of a factor $k$ equal to the

bit-length of the

distributions: $\epsilon$-distinguishability implies only

$\epsilon/k$-predictability. ...
more >>>

N. V. Vinodchandran

The graph reachability problem, the computational task of deciding whether there is a path between two given nodes in a graph is the canonical problem for studying space bounded computations. Three central open questions regarding the space complexity of the reachability problem over directed graphs are: (1) improving Savitch's $O(\log^2 ... more >>>

Diptarka Chakraborty, A. Pavan, Raghunath Tewari, N. V. Vinodchandran, Lin Yang

We obtain the following new simultaneous time-space upper bounds for the directed reachability problem.

(1) A polynomial-time,

$\tilde{O}(n^{2/3}g^{1/3})$-space algorithm for directed graphs embedded on orientable surfaces of genus $g$. (2) A polynomial-time, $\tilde{O}(n^{2/3})$-space algorithm for all $H$-minor-free graphs given the tree decomposition, and (3) for $K_{3, 3}$-free and ...
more >>>

James Cook, Ian Mertz

An $m$-catalytic branching program (Girard, Koucky, McKenzie 2015) is a set of $m$ distinct branching programs for $f$ which are permitted to share internal (i.e. non-source non-sink) nodes. While originally introduced as a non-uniform analogue to catalytic space, this also gives a natural notion of amortized non-uniform space complexity for ... more >>>