Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > POLYNOMIAL CALCULUS:
Reports tagged with Polynomial Calculus:
TR99-040 | 20th October 1999
Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, Avi Wigderson

Space Complexity in Propositional Calculus

We study space complexity in the framework of
propositional proofs. We consider a natural model analogous to
Turing machines with a read-only input tape, and such
popular propositional proof systems as Resolution, Polynomial
Calculus and Frege systems. We propose two different space measures,
corresponding to the maximal number of bits, ... more >>>


TR00-023 | 11th May 2000
Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, Avi Wigderson

Pseudorandom Generators in Propositional Proof Complexity

We call a pseudorandom generator $G_n:\{0,1\}^n\to \{0,1\}^m$ {\em
hard} for a propositional proof system $P$ if $P$ can not efficiently
prove the (properly encoded) statement $G_n(x_1,\ldots,x_n)\neq b$ for
{\em any} string $b\in\{0,1\}^m$. We consider a variety of
``combinatorial'' pseudorandom generators inspired by the
Nisan-Wigderson generator on the one hand, and ... more >>>


TR01-011 | 21st January 2001
Dima Grigoriev, Edward Hirsch

Algebraic proof systems over formulas

We introduce two algebraic propositional proof systems F-NS
and F-PC. The main difference of our systems from (customary)
Nullstellensatz and Polynomial Calculus is that the polynomials
are represented as arbitrary formulas (rather than sums of
monomials). Short proofs of Tseitin's tautologies in the
constant-depth version of F-NS provide ... more >>>


TR06-001 | 1st January 2006
Ran Raz, Iddo Tzameret

The Strength of Multilinear Proofs

We introduce an algebraic proof system that manipulates multilinear arithmetic formulas. We show that this proof system is fairly strong, even when restricted to multilinear arithmetic formulas of a very small depth. Specifically, we show the following:

1. Algebraic proofs manipulating depth 2 multilinear arithmetic formulas polynomially simulate Resolution, Polynomial ... more >>>


TR07-041 | 20th April 2007
Nicola Galesi, Massimo Lauria

Extending Polynomial Calculus to $k$-DNF Resolution

Revisions: 1

We introduce an algebraic proof system Pcrk, which combines together {\em Polynomial Calculus} (Pc) and {\em $k$-DNF Resolution} (Resk).
This is a natural generalization to Resk of the well-known {\em Polynomial Calculus with Resolution} (Pcr) system which combines together Pc and Resolution.

We study the complexity of proofs in such ... more >>>


TR09-137 | 14th December 2009
Massimo Lauria

Random CNFs require spacious Polynomial Calculus refutations

Comments: 1

We study the space required by Polynomial Calculus refutations of random $k$-CNFs. We are interested in how many monomials one needs to keep in memory to carry on a refutation. More precisely we show that for $k \geq 4$ a refutation of a random $k$-CNF of $\Delta n$ clauses and ... more >>>


TR10-097 | 16th June 2010
Iddo Tzameret

Algebraic Proofs over Noncommutative Formulas

Revisions: 1

We study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege--yielding a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic analogue of Frege proofs, different from that given in Buss ... more >>>


TR12-132 | 21st October 2012
Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, Neil Thapen

Space Complexity in Polynomial Calculus

During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems ... more >>>


TR14-081 | 13th June 2014
Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, Marc Vinyals

From Small Space to Small Width in Resolution

In 2003, Atserias and Dalmau resolved a major open question about the resolution proof system by establishing that the space complexity of CNF formulas is always an upper bound on the width needed to refute them. Their proof is beautiful but somewhat mysterious in that it relies heavily on tools ... more >>>


TR14-118 | 9th September 2014
Albert Atserias, Massimo Lauria, Jakob Nordström

Narrow Proofs May Be Maximally Long

We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n^Omega(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n^O(w) is essentially tight. ... more >>>


TR14-146 | 6th November 2014
Ilario Bonacina, Nicola Galesi, Tony Huynh, Paul Wollan

Space proof complexity for random $3$-CNFs via a $(2-\epsilon)$-Hall's Theorem

We investigate the space complexity of refuting $3$-CNFs in Resolution and algebraic systems. No lower bound for refuting any family of $3$-CNFs was previously known for the total space in resolution or for the monomial space in algebraic systems. We prove that every Polynomial Calculus with Resolution refutation of a ... more >>>


TR15-078 | 4th May 2015
Mladen Mikša, Jakob Nordström

A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. '99] also on proof size. [Alekhnovich and Razborov '03] established that if the clause-variable incidence graph of a CNF formula F is a good ... more >>>


TR17-154 | 12th October 2017
Christoph Berkholz

The Relation between Polynomial Calculus, Sherali-Adams, and Sum-of-Squares Proofs

We relate different approaches for proving the unsatisfiability of a system of real polynomial equations over Boolean variables. On the one hand, there are the static proof systems Sherali-Adams and sum-of-squares (a.k.a. Lasserre), which are based on linear and semi-definite programming relaxations. On the other hand, we consider polynomial calculus, ... more >>>


TR19-052 | 9th April 2019
Nicola Galesi, Leszek Kolodziejczyk, Neil Thapen

Polynomial calculus space and resolution width

We show that if a $k$-CNF requires width $w$ to refute in resolution, then it requires space $\sqrt w$ to refute in polynomial calculus, where the space of a polynomial calculus refutation is the number of monomials that must be kept in memory when working through the proof. This is ... more >>>


TR20-012 | 14th February 2020
Dmitry Sokolov

(Semi)Algebraic Proofs over $\{\pm 1\}$ Variables

One of the major open problems in proof complexity is to prove lower bounds on $AC_0[p]$-Frege proof
systems. As a step toward this goal Impagliazzo, Mouli and Pitassi in a recent paper suggested to prove
lower bounds on the size for Polynomial Calculus over the $\{\pm 1\}$ basis. In this ... more >>>


TR20-034 | 12th March 2020
Erfan Khaniki

On Proof complexity of Resolution over Polynomial Calculus

Revisions: 3

The refutation system ${Res}_R({PC}_d)$ is a natural extension of resolution refutation system such that it operates with disjunctions of degree $d$ polynomials over ring $R$ with boolean variables. For $d=1$, this system is called ${Res}_R({lin})$. Based on properties of $R$, ${Res}_R({lin})$ systems can be too strong to prove lower ... more >>>


TR21-021 | 18th February 2021
Per Austrin, Kilian Risse

Average-Case Perfect Matching Lower Bounds from Hardness of Tseitin Formulas

Revisions: 2

We study the complexity of proving that a sparse random regular graph on an odd number of vertices does not have a perfect matching, and related problems involving each vertex being matched some pre-specified number of times. We show that this requires proofs of degree $\Omega(n/\log n)$ in the Polynomial ... more >>>


TR21-179 | 8th December 2021
tatsuie tsukiji

Smoothed Complexity of Learning Disjunctive Normal Forms, Inverting Fourier Transforms, and Verifying Small Circuits

Comments: 1

This paper aims to derandomize the following problems in the smoothed analysis of Spielman and Teng. Learn Disjunctive Normal Form (DNF), invert Fourier Transforms (FT), and verify small circuits' unsatisfiability. Learning algorithms must predict a future observation from the only $m$ i.i.d. samples of a fixed but unknown joint-distribution $P(G(x),y)$ ... more >>>


TR22-105 | 18th July 2022
Ilario Bonacina, Nicola Galesi, Massimo Lauria

On vanishing sums of roots of unity in polynomial calculus and sum-of-squares

Vanishing sums of roots of unity can be seen as a natural generalization of knapsack from Boolean variables to variables taking values over the roots of unity. We show that these sums are hard to prove for polynomial calculus and for sum-of-squares, both in terms of degree and size.

more >>>

TR22-141 | 20th October 2022
Sam Buss, Noah Fleming, Russell Impagliazzo

TFNP Characterizations of Proof Systems and Monotone Circuits

Revisions: 2

Connections between proof complexity and circuit complexity have become major tools for obtaining lower bounds in both areas. These connections -- which take the form of interpolation theorems and query-to-communication lifting theorems -- translate efficient proofs into small circuits, and vice versa, allowing tools from one area to be applied ... more >>>


TR23-132 | 12th September 2023
Yogesh Dahiya, Meena Mahajan, Sasank Mouli

New lower bounds for Polynomial Calculus over non-Boolean bases

Revisions: 1


In this paper, we obtain new size lower bounds for proofs in the
Polynomial Calculus (PC) proof system, in two different settings.

1. When the Boolean variables are encoded using $\pm 1$ (as opposed
to $0,1$): We establish a lifting theorem using an asymmetric gadget
$G$, showing ... more >>>


TR24-038 | 27th February 2024
Olaf Beyersdorff, Kaspar Kasche, Luc Nicolas Spachmann

Polynomial Calculus for Quantified Boolean Logic: Lower Bounds through Circuits and Degree

We initiate an in-depth proof-complexity analysis of polynomial calculus (Q-PC) for Quantified Boolean Formulas (QBF). In the course of this we establish a tight proof-size characterisation of Q-PC in terms of a suitable circuit model (polynomial decision lists). Using this correspondence we show a size-degree relation for Q-PC, similar in ... more >>>


TR24-046 | 6th March 2024
Sasank Mouli

Polynomial Calculus sizes over the Boolean and Fourier bases are incomparable

For every $n >0$, we show the existence of a CNF tautology over $O(n^2)$ variables of width $O(\log n)$ such that it has a Polynomial Calculus Resolution refutation over $\{0,1\}$ variables of size $O(n^3polylog(n))$ but any Polynomial Calculus refutation over $\{+1,-1\}$ variables requires size $2^{\Omega(n)}$. This shows that Polynomial Calculus ... more >>>




ISSN 1433-8092 | Imprint