Eli Ben-Sasson, Nicola Galesi

We study the space complexity of refuting unsatisfiable random $k$-CNFs in

the Resolution proof system. We prove that for any large enough $\Delta$,

with high probability a random $k$-CNF over $n$ variables and $\Delta n$

clauses requires resolution clause space of

$\Omega(n \cdot \Delta^{-\frac{1+\epsilon}{k-2-\epsilon}})$,

for any $0<\epsilon<1/2$. For constant $\Delta$, ...
more >>>

Nicola Galesi, Massimo Lauria

We introduce an algebraic proof system Pcrk, which combines together {\em Polynomial Calculus} (Pc) and {\em $k$-DNF Resolution} (Resk).

This is a natural generalization to Resk of the well-known {\em Polynomial Calculus with Resolution} (Pcr) system which combines together Pc and Resolution.

We study the complexity of proofs in such ... more >>>

Ilario Bonacina, Nicola Galesi, Neil Thapen

We show $\Omega(n^2)$ lower bounds on the total space used in resolution refutations of random $k$-CNFs over $n$ variables, and of the graph pigeonhole principle and the bit pigeonhole principle for $n$ holes. This answers the long-standing open problem of whether there are families of $k$-CNF formulas of size $O(n)$ ... more >>>

Anastasia Sofronova, Dmitry Sokolov

Random $\Delta$-CNF formulas are one of the few candidates that are expected to be hard to refute in any proof system. One of the frontiers in the direction of proving lower bounds on these formulas is the $k$-DNF Resolution proof system (aka $\mathrm{Res}(k)$). Assume we sample $m$ clauses over $n$ ... more >>>

Dmitry Sokolov

The random $\Delta$-CNF model is one of the most important distribution over $\Delta\text{-}\mathrm{SAT}$ instances. It is closely connected to various areas of computer science, statistical physics, and is a benchmark for satisfiability algorithms. Fleming, Pankratov, Pitassi, and Robere and independently Hrubes and Pudlak showed that when $\Delta = \Theta(\log n)$, ... more >>>