Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > KEYWORD > LOW DEGREE POLYNOMIALS:
Reports tagged with low degree polynomials:
TR05-155 | 10th December 2005
Amir Shpilka

Constructions of low-degree and error-correcting epsilon-biased sets

In this work we give two new constructions of $\epsilon$-biased
generators. Our first construction answers an open question of
Dodis and Smith, and our second construction
significantly extends a result of Mossel et al.
In particular we obtain the following results:

1. We construct a family of asymptotically good binary ... more >>>


TR07-075 | 9th August 2007
Shachar Lovett

Unconditional pseudorandom generators for low degree polynomials

We give an explicit construction of pseudorandom
generators against low degree polynomials over finite fields. We
show that the sum of $2^d$ small-biased generators with error
$\epsilon^{2^{O(d)}}$ is a pseudorandom generator against degree $d$
polynomials with error $\epsilon$. This gives a generator with seed
length $2^{O(d)} \log{(n/\epsilon)}$. Our construction follows ... more >>>


TR07-123 | 21st November 2007
Shachar Lovett, Roy Meshulam, Alex Samorodnitsky

Inverse Conjecture for the Gowers norm is false

Revisions: 2


Let $p$ be a fixed prime number, and $N$ be a large integer.
The 'Inverse Conjecture for the Gowers norm' states that if the "$d$-th Gowers norm" of a function $f:\F_p^N \to \F_p$ is non-negligible, that is larger than a constant independent of $N$, then $f$ can be non-trivially ... more >>>


TR08-072 | 11th August 2008
Shachar Lovett, Tali Kaufman

Worst case to Average case reductions for polynomials

A degree-d polynomial p in n variables over a field F is equidistributed if it takes on each of its |F| values close to equally often, and biased otherwise. We say that p has low rank if it can be expressed as a function of a small number of lower ... more >>>


TR08-111 | 14th November 2008
Shachar Lovett, Tali Kaufman

The List-Decoding Size of Reed-Muller Codes

Revisions: 2

In this work we study the list-decoding size of Reed-Muller codes. Given a received word and a distance parameter, we are interested in bounding the size of the list of Reed-Muller codewords that are within that distance from the received word. Previous bounds of Gopalan, Klivans and Zuckerman~\cite{GKZ08} on the ... more >>>


TR13-145 | 20th October 2013
Gil Cohen, Avishay Tal

Two Structural Results for Low Degree Polynomials and Applications

Revisions: 1

In this paper, two structural results concerning low degree polynomials over the field $\mathbb{F}_2$ are given. The first states that for any degree d polynomial f in n variables, there exists a subspace of $\mathbb{F}_2^n$ with dimension $\Omega(n^{1/(d-1)})$ on which f is constant. This result is shown to be tight. ... more >>>


TR13-155 | 10th November 2013
Gil Cohen, Amnon Ta-Shma

Pseudorandom Generators for Low Degree Polynomials from Algebraic Geometry Codes

Revisions: 2

Constructing pseudorandom generators for low degree polynomials has received a considerable attention in the past decade. Viola [CC 2009], following an exciting line of research, constructed a pseudorandom generator for degree d polynomials in n variables, over any prime field. The seed length used is $O(d \log{n} + d 2^d)$, ... more >>>


TR19-145 | 31st October 2019
Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, David Zuckerman

XOR Lemmas for Resilient Functions Against Polynomials

A major challenge in complexity theory is to explicitly construct functions that have small correlation with low-degree polynomials over $F_2$. We introduce a new technique to prove such correlation bounds with $F_2$ polynomials. Using this technique, we bound the correlation of an XOR of Majorities with constant degree polynomials. In ... more >>>




ISSN 1433-8092 | Imprint