We study the complexity of finding the values and optimal strategies of
MEAN PAYOFF GAMES on graphs, a family of perfect information games
introduced by Ehrenfeucht and Mycielski and considered by Gurvich,
Karzanov and Khachiyan. We describe a pseudo-polynomial time algorithm
for the solution of such games, the decision ...
more >>>
In this paper, we consider the question of determining whether
a function $f$ has property $P$ or is $\e$-far from any
function with property $P$.
The property testing algorithm is given a sample of the value
of $f$ on instances drawn according to some distribution.
In some cases,
more >>>
Let G=(V,E) be an unweighted undirected graph on n vertices. A simple
argument shows that computing all distances in G with an additive
one-sided error of at most 1 is as hard as Boolean matrix
multiplication. Building on recent work of Aingworth, Chekuri and
Motwani, we describe an \tilde{O}(min{n^{3/2}m^{1/2},n^{7/3}) time
more >>>
We consider the question of determining whether
a given object has a predetermined property or is ``far'' from any
object having the property.
Specifically, objects are modeled by functions,
and distance between functions is measured as the fraction
of the domain on which the functions differ.
We ...
more >>>
We present two new algorithms for solving the {\em All
Pairs Shortest Paths\/} (APSP) problem for weighted directed
graphs. Both algorithms use fast matrix multiplication algorithms.
The first algorithm
solves the APSP problem for weighted directed graphs in which the edge
weights are integers of small absolute value in ...
more >>>
Following Feige, we consider the problem of
estimating the average degree of a graph.
Using ``neighbor queries'' as well as ``degree queries'',
we show that the average degree can be approximated
arbitrarily well in sublinear time, unless the graph is extremely sparse
(e.g., unless the graph has a sublinear ...
more >>>
We consider the ``minor'' and ``homeomorphic'' analogues of the maximum clique problem, i.e., the problems of determining the largest $h$ such that the input graph has a minor isomorphic to $K_h$ or a subgraph homeomorphic to $K_h,$ respectively.We show the former to be approximable within $O(\sqrt {n} \log^{1.5} n)$ by ... more >>>
We present a deterministic algorithm producing the number of
$k$-colourings of a graph on $n$ vertices in time
$2^nn^{O(1)}$.
We also show that the chromatic number can be found by a
polynomial space algorithm running in time $O(2.2461^n)$.
Finally, we present a family of ...
more >>>
A coloring of a graph is {\it convex} if it
induces a partition of the vertices into connected subgraphs.
Besides being an interesting property from a theoretical point of
view, tests for convexity have applications in various areas
involving large graphs. Our results concern the important subcase
of testing for ...
more >>>
We consider the problem of testing graph expansion in the bounded degree model. We give a property tester that given a graph with degree bound $d$, an expansion bound $\alpha$, and a parameter $\epsilon > 0$, accepts the graph with high probability if its expansion is more than $\alpha$, and ... more >>>
Prior studies of testing graph properties presume that the tester can obtain uniformly distributed vertices in the tested graph (in addition to obtaining answers to the some type of graph-queries).
Here we envision settings in which it is only feasible to obtain random vertices drawn according to an arbitrary distribution ...
more >>>
We study two notions that refers to asymmetric graphs, which we view as graphs having a unique ordering that can be reconstructed by looking at an unlabeled version of the graph.
A {\em local self-ordering} procedure for a graph $G$ is given oracle access to an arbitrary isomorphic copy of ... more >>>